{"title":"[Ras相关结合蛋白23敲除对食管鳞癌细胞迁移和侵袭的影响及其机制]。","authors":"G Ma, H Liang, R P Zhang, Y Sun","doi":"10.3760/cma.j.cn112152-20231026-00258","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objective:</b> To investigate the role and the mechanism of Ras-associated binding protein23 (RAB23) in the migration and invasion of esophageal squamous cell carcinoma (ESCC) cells. <b>Methods:</b> RAB23 mRNA levels were measured in 16 pairs of ESCC and adjacent normal tissues via real-time polymerase chain reactions. RAB23 mRNA levels in the ESCC and adjacent normal tissues of dataset GSE20347 deposited in the Gene Expression Omnibus (GEO) database were also analyzed. Immunohistochemistry (IHC) was used to detect the RAB23 protein expressions in 106 pairs of ESCC and adjacent normal tissues, as well as in the lymph glands and primary tumor tissues of 33 patients with positive lymph nodes and 10 patients with negative lymph nodes. Endogenous RAB23 expression was transiently depleted using siRNAs (si-NC, si-RAB23-1, and si-RAB23-9) or stably reduced using shRNAs (sh-NC and sh-RAB23) in ESCC KYSE30 and KYSE150 cells, and the knockdown efficiency was tested using Western blot assays. Cell counting kit-8 assays and mouse xenograft models were used to test the proliferation of ESCC cells<i>.</i> Transwell assays and tail vein-pulmonary metastasis models in immunocompromised mice were used to examine the migration and invasion of ESCC cells. Cell adhesion assays were used to test the adhesion of ESCC cells. RNA-seq assays were used to analyze how RAB23 knockdown influenced the expression profile of ESCC cells and the implicated signal pathways were confirmed using Western blot assays. <b>Results:</b> The RAB23 mRNA expression in 16 cases of ESCC tissues was 0.009 7±0.008 9, which was markedly higher than that in adjacent normal tissues (0.003 2±0.003 7, <i>P</i>=0.006). GEO analysis on RAB23 expressions in ESCC and adjacent normal tissues showed that the RAB23 mRNA level in ESCC tissues (4.30±0.25) was remarkably increased compared with their normal counterparts (4.10±0.17, <i>P=</i>0.037). Among the 106 pairs of ESCC and tumor-adjacent normal tissues, 51 cases exhibited low expression of RAB23 and 55 cases showed high expression of RAB23, whereas in the paired tumor-adjacent normal tissues 82 cases were stained weakly and 24 strongly for RAB23 protein. These results indicated that RAB23 expression was markedly increased in ESCC tissues (<i>P</i><0.001). Additionally, only 1 out of 33 primary ESCC tissues with positive lymph nodes showed low RAB23 protein expression. On the other hand, 7 samples of primary ESCC tissues with negative lymph nodes were stained strongly for RAB23 while its level in the other 3 samples was weak. These results showed that RAB23 expression was remarkably increased in primary ESCC tissues with positive lymph nodes compared with those with negative lymph nodes (<i>P</i>=0.024). Further tests showed that 32 out of 33 positive lymph nodes were stained strongly for RAB23, whereas no negative lymph nodes (<i>n</i>=10) exhibited high expression of RAB23 (<i>P</i><0.001). Both transient and stable knockdown of endogenous RAB23 expression failed to cause detectable changes in the proliferation of KYSE30 cells <i>in vitro</i> and <i>in vivo</i>, but attenuated the migration and invasion of KYSE30 cells as well as the invasion of KYSE150 cells. RAB23 knockdown was found to significantly decrease the number of adhesive KYSE30 cells in the sh-RAB23 group (313.75±89.34) compared with control cells in the sh-NC group (1 030.75±134.29, <i>P</i><0.001). RAB23 knockdown was also found to significantly decrease the number of adhesive KYSE150 cells in the sh-RAB23 group (710.5±31.74) compared with the number of control cells in the sh-NC group (1 005.75±61.09, <i>P</i><0.001). RNA-seq assays demonstrated that RAB23 knockdown using two siRNAs targeting RAB23 mRNA markedly impaired focal adhesion-related signal pathways, and decreased the levels of phosphorylated FAK (p-FAK) and phosphorylated paxillin (p-paxillin) in KYSE30 and KYSE150 cells. <b>Conclusions:</b> Significantly increased RAB23 in ESCC tissues positively correlates with lymph node metastasis. Depleted RAB23 expression attenuates focal adhesion-related signal pathways, thus impairing the invasion, metastasis, and adhesion of ESCC cells.</p>","PeriodicalId":39868,"journal":{"name":"中华肿瘤杂志","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[The influence of Ras-associated binding protein 23 knockdown on the migration and invasion of esophageal squamous cell carcinoma cells and its mechanism].\",\"authors\":\"G Ma, H Liang, R P Zhang, Y Sun\",\"doi\":\"10.3760/cma.j.cn112152-20231026-00258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objective:</b> To investigate the role and the mechanism of Ras-associated binding protein23 (RAB23) in the migration and invasion of esophageal squamous cell carcinoma (ESCC) cells. <b>Methods:</b> RAB23 mRNA levels were measured in 16 pairs of ESCC and adjacent normal tissues via real-time polymerase chain reactions. RAB23 mRNA levels in the ESCC and adjacent normal tissues of dataset GSE20347 deposited in the Gene Expression Omnibus (GEO) database were also analyzed. Immunohistochemistry (IHC) was used to detect the RAB23 protein expressions in 106 pairs of ESCC and adjacent normal tissues, as well as in the lymph glands and primary tumor tissues of 33 patients with positive lymph nodes and 10 patients with negative lymph nodes. Endogenous RAB23 expression was transiently depleted using siRNAs (si-NC, si-RAB23-1, and si-RAB23-9) or stably reduced using shRNAs (sh-NC and sh-RAB23) in ESCC KYSE30 and KYSE150 cells, and the knockdown efficiency was tested using Western blot assays. Cell counting kit-8 assays and mouse xenograft models were used to test the proliferation of ESCC cells<i>.</i> Transwell assays and tail vein-pulmonary metastasis models in immunocompromised mice were used to examine the migration and invasion of ESCC cells. Cell adhesion assays were used to test the adhesion of ESCC cells. RNA-seq assays were used to analyze how RAB23 knockdown influenced the expression profile of ESCC cells and the implicated signal pathways were confirmed using Western blot assays. <b>Results:</b> The RAB23 mRNA expression in 16 cases of ESCC tissues was 0.009 7±0.008 9, which was markedly higher than that in adjacent normal tissues (0.003 2±0.003 7, <i>P</i>=0.006). GEO analysis on RAB23 expressions in ESCC and adjacent normal tissues showed that the RAB23 mRNA level in ESCC tissues (4.30±0.25) was remarkably increased compared with their normal counterparts (4.10±0.17, <i>P=</i>0.037). Among the 106 pairs of ESCC and tumor-adjacent normal tissues, 51 cases exhibited low expression of RAB23 and 55 cases showed high expression of RAB23, whereas in the paired tumor-adjacent normal tissues 82 cases were stained weakly and 24 strongly for RAB23 protein. These results indicated that RAB23 expression was markedly increased in ESCC tissues (<i>P</i><0.001). Additionally, only 1 out of 33 primary ESCC tissues with positive lymph nodes showed low RAB23 protein expression. On the other hand, 7 samples of primary ESCC tissues with negative lymph nodes were stained strongly for RAB23 while its level in the other 3 samples was weak. These results showed that RAB23 expression was remarkably increased in primary ESCC tissues with positive lymph nodes compared with those with negative lymph nodes (<i>P</i>=0.024). Further tests showed that 32 out of 33 positive lymph nodes were stained strongly for RAB23, whereas no negative lymph nodes (<i>n</i>=10) exhibited high expression of RAB23 (<i>P</i><0.001). Both transient and stable knockdown of endogenous RAB23 expression failed to cause detectable changes in the proliferation of KYSE30 cells <i>in vitro</i> and <i>in vivo</i>, but attenuated the migration and invasion of KYSE30 cells as well as the invasion of KYSE150 cells. RAB23 knockdown was found to significantly decrease the number of adhesive KYSE30 cells in the sh-RAB23 group (313.75±89.34) compared with control cells in the sh-NC group (1 030.75±134.29, <i>P</i><0.001). RAB23 knockdown was also found to significantly decrease the number of adhesive KYSE150 cells in the sh-RAB23 group (710.5±31.74) compared with the number of control cells in the sh-NC group (1 005.75±61.09, <i>P</i><0.001). RNA-seq assays demonstrated that RAB23 knockdown using two siRNAs targeting RAB23 mRNA markedly impaired focal adhesion-related signal pathways, and decreased the levels of phosphorylated FAK (p-FAK) and phosphorylated paxillin (p-paxillin) in KYSE30 and KYSE150 cells. <b>Conclusions:</b> Significantly increased RAB23 in ESCC tissues positively correlates with lymph node metastasis. Depleted RAB23 expression attenuates focal adhesion-related signal pathways, thus impairing the invasion, metastasis, and adhesion of ESCC cells.</p>\",\"PeriodicalId\":39868,\"journal\":{\"name\":\"中华肿瘤杂志\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中华肿瘤杂志\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3760/cma.j.cn112152-20231026-00258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中华肿瘤杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3760/cma.j.cn112152-20231026-00258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[The influence of Ras-associated binding protein 23 knockdown on the migration and invasion of esophageal squamous cell carcinoma cells and its mechanism].
Objective: To investigate the role and the mechanism of Ras-associated binding protein23 (RAB23) in the migration and invasion of esophageal squamous cell carcinoma (ESCC) cells. Methods: RAB23 mRNA levels were measured in 16 pairs of ESCC and adjacent normal tissues via real-time polymerase chain reactions. RAB23 mRNA levels in the ESCC and adjacent normal tissues of dataset GSE20347 deposited in the Gene Expression Omnibus (GEO) database were also analyzed. Immunohistochemistry (IHC) was used to detect the RAB23 protein expressions in 106 pairs of ESCC and adjacent normal tissues, as well as in the lymph glands and primary tumor tissues of 33 patients with positive lymph nodes and 10 patients with negative lymph nodes. Endogenous RAB23 expression was transiently depleted using siRNAs (si-NC, si-RAB23-1, and si-RAB23-9) or stably reduced using shRNAs (sh-NC and sh-RAB23) in ESCC KYSE30 and KYSE150 cells, and the knockdown efficiency was tested using Western blot assays. Cell counting kit-8 assays and mouse xenograft models were used to test the proliferation of ESCC cells. Transwell assays and tail vein-pulmonary metastasis models in immunocompromised mice were used to examine the migration and invasion of ESCC cells. Cell adhesion assays were used to test the adhesion of ESCC cells. RNA-seq assays were used to analyze how RAB23 knockdown influenced the expression profile of ESCC cells and the implicated signal pathways were confirmed using Western blot assays. Results: The RAB23 mRNA expression in 16 cases of ESCC tissues was 0.009 7±0.008 9, which was markedly higher than that in adjacent normal tissues (0.003 2±0.003 7, P=0.006). GEO analysis on RAB23 expressions in ESCC and adjacent normal tissues showed that the RAB23 mRNA level in ESCC tissues (4.30±0.25) was remarkably increased compared with their normal counterparts (4.10±0.17, P=0.037). Among the 106 pairs of ESCC and tumor-adjacent normal tissues, 51 cases exhibited low expression of RAB23 and 55 cases showed high expression of RAB23, whereas in the paired tumor-adjacent normal tissues 82 cases were stained weakly and 24 strongly for RAB23 protein. These results indicated that RAB23 expression was markedly increased in ESCC tissues (P<0.001). Additionally, only 1 out of 33 primary ESCC tissues with positive lymph nodes showed low RAB23 protein expression. On the other hand, 7 samples of primary ESCC tissues with negative lymph nodes were stained strongly for RAB23 while its level in the other 3 samples was weak. These results showed that RAB23 expression was remarkably increased in primary ESCC tissues with positive lymph nodes compared with those with negative lymph nodes (P=0.024). Further tests showed that 32 out of 33 positive lymph nodes were stained strongly for RAB23, whereas no negative lymph nodes (n=10) exhibited high expression of RAB23 (P<0.001). Both transient and stable knockdown of endogenous RAB23 expression failed to cause detectable changes in the proliferation of KYSE30 cells in vitro and in vivo, but attenuated the migration and invasion of KYSE30 cells as well as the invasion of KYSE150 cells. RAB23 knockdown was found to significantly decrease the number of adhesive KYSE30 cells in the sh-RAB23 group (313.75±89.34) compared with control cells in the sh-NC group (1 030.75±134.29, P<0.001). RAB23 knockdown was also found to significantly decrease the number of adhesive KYSE150 cells in the sh-RAB23 group (710.5±31.74) compared with the number of control cells in the sh-NC group (1 005.75±61.09, P<0.001). RNA-seq assays demonstrated that RAB23 knockdown using two siRNAs targeting RAB23 mRNA markedly impaired focal adhesion-related signal pathways, and decreased the levels of phosphorylated FAK (p-FAK) and phosphorylated paxillin (p-paxillin) in KYSE30 and KYSE150 cells. Conclusions: Significantly increased RAB23 in ESCC tissues positively correlates with lymph node metastasis. Depleted RAB23 expression attenuates focal adhesion-related signal pathways, thus impairing the invasion, metastasis, and adhesion of ESCC cells.