Yuan-Zheng Zhu, Jian-Kun Liu, Xue-Er Li, Zhen-Ping Yu, Lu-Qin Yang, Qin Wan, Ya Zhao, Muhammad Saeed, An-Dong Wu, Xiao-Li Tian
{"title":"全基因组搜索将衰老相关分泌蛋白与小鼠和人类冠状动脉疾病的易感性联系起来。","authors":"Yuan-Zheng Zhu, Jian-Kun Liu, Xue-Er Li, Zhen-Ping Yu, Lu-Qin Yang, Qin Wan, Ya Zhao, Muhammad Saeed, An-Dong Wu, Xiao-Li Tian","doi":"10.1093/gerona/glae070","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced age is an independent risk factor for coronary artery disease (CAD), the leading global cause of mortality. Senescent vascular cells in the atherosclerotic plaques exhibit senescence-associated secretory phenotype (SASP). How SASP contributes to atherosclerosis and CAD, however, remains unclear. Here, we integrated RNA-array datasets of senescent human coronary arterial endothelial cells (HCAECs) and aortic smooth muscle cells (HASMCs) as well as genome-wide association data for CAD. We identified 26 genes from HCAECs and 6 genes from HASMCs related to SASP and CAD in both in-house and published datasets. Of which, Cystatin C (CST3), a CAD susceptibility gene, was found to be expressed in both HCAECs and HASMCs, thus, it was prioritized for further investigation. We demonstrated it was significantly elevated in senescent vascular cells, aged arteries, and early atherosclerosis. In vitro experiments showed that CST3 enhances the monocyte-endothelial cell adhesion. Additionally, ligand-receptor pairing analyses revealed two important pathways, COL4A1-ITGA1 and LPL-LRP1 pathways, linked to the critical processes in the development of atherosclerosis, including cell adhesion, inflammation response, extracellular matrix organization, and lipid metabolism. We further demonstrated a reduced monocyte-endothelial cell adhesion following the knockdown of COL4A1 or ITGA1 and a significantly increased expression of COL4A1, ITGA1, and LPL in arterial intima of aged mice and ApoE-/- mice. Our findings demonstrate that vascular cell-derived SASP proteins increase the CAD susceptibility and identify CST3 functionally contributing to atherosclerosis.</p>","PeriodicalId":94243,"journal":{"name":"The journals of gerontology. Series A, Biological sciences and medical sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-Wide Search Links Senescence-Associated Secretory Proteins With Susceptibility for Coronary Artery Disease in Mouse and Human.\",\"authors\":\"Yuan-Zheng Zhu, Jian-Kun Liu, Xue-Er Li, Zhen-Ping Yu, Lu-Qin Yang, Qin Wan, Ya Zhao, Muhammad Saeed, An-Dong Wu, Xiao-Li Tian\",\"doi\":\"10.1093/gerona/glae070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advanced age is an independent risk factor for coronary artery disease (CAD), the leading global cause of mortality. Senescent vascular cells in the atherosclerotic plaques exhibit senescence-associated secretory phenotype (SASP). How SASP contributes to atherosclerosis and CAD, however, remains unclear. Here, we integrated RNA-array datasets of senescent human coronary arterial endothelial cells (HCAECs) and aortic smooth muscle cells (HASMCs) as well as genome-wide association data for CAD. We identified 26 genes from HCAECs and 6 genes from HASMCs related to SASP and CAD in both in-house and published datasets. Of which, Cystatin C (CST3), a CAD susceptibility gene, was found to be expressed in both HCAECs and HASMCs, thus, it was prioritized for further investigation. We demonstrated it was significantly elevated in senescent vascular cells, aged arteries, and early atherosclerosis. In vitro experiments showed that CST3 enhances the monocyte-endothelial cell adhesion. Additionally, ligand-receptor pairing analyses revealed two important pathways, COL4A1-ITGA1 and LPL-LRP1 pathways, linked to the critical processes in the development of atherosclerosis, including cell adhesion, inflammation response, extracellular matrix organization, and lipid metabolism. We further demonstrated a reduced monocyte-endothelial cell adhesion following the knockdown of COL4A1 or ITGA1 and a significantly increased expression of COL4A1, ITGA1, and LPL in arterial intima of aged mice and ApoE-/- mice. Our findings demonstrate that vascular cell-derived SASP proteins increase the CAD susceptibility and identify CST3 functionally contributing to atherosclerosis.</p>\",\"PeriodicalId\":94243,\"journal\":{\"name\":\"The journals of gerontology. Series A, Biological sciences and medical sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The journals of gerontology. Series A, Biological sciences and medical sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/gerona/glae070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The journals of gerontology. Series A, Biological sciences and medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gerona/glae070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genome-Wide Search Links Senescence-Associated Secretory Proteins With Susceptibility for Coronary Artery Disease in Mouse and Human.
Advanced age is an independent risk factor for coronary artery disease (CAD), the leading global cause of mortality. Senescent vascular cells in the atherosclerotic plaques exhibit senescence-associated secretory phenotype (SASP). How SASP contributes to atherosclerosis and CAD, however, remains unclear. Here, we integrated RNA-array datasets of senescent human coronary arterial endothelial cells (HCAECs) and aortic smooth muscle cells (HASMCs) as well as genome-wide association data for CAD. We identified 26 genes from HCAECs and 6 genes from HASMCs related to SASP and CAD in both in-house and published datasets. Of which, Cystatin C (CST3), a CAD susceptibility gene, was found to be expressed in both HCAECs and HASMCs, thus, it was prioritized for further investigation. We demonstrated it was significantly elevated in senescent vascular cells, aged arteries, and early atherosclerosis. In vitro experiments showed that CST3 enhances the monocyte-endothelial cell adhesion. Additionally, ligand-receptor pairing analyses revealed two important pathways, COL4A1-ITGA1 and LPL-LRP1 pathways, linked to the critical processes in the development of atherosclerosis, including cell adhesion, inflammation response, extracellular matrix organization, and lipid metabolism. We further demonstrated a reduced monocyte-endothelial cell adhesion following the knockdown of COL4A1 or ITGA1 and a significantly increased expression of COL4A1, ITGA1, and LPL in arterial intima of aged mice and ApoE-/- mice. Our findings demonstrate that vascular cell-derived SASP proteins increase the CAD susceptibility and identify CST3 functionally contributing to atherosclerosis.