利用定量易感性图谱观察化学固定人类胚胎的组织学特性

Toru Shirai, Yasuhiko Terada, Katsumi Kose, Shigehito Yamada
{"title":"利用定量易感性图谱观察化学固定人类胚胎的组织学特性","authors":"Toru Shirai, Yasuhiko Terada, Katsumi Kose, Shigehito Yamada","doi":"10.2463/mrms.tn.2023-0149","DOIUrl":null,"url":null,"abstract":"<p><p>A chemically fixed Carnegie stage 23 (approximately 56 days of gestation) human embryo specimen was imaged using 3D spin-echo and gradient-echo sequences in a static magnetic field strength of 4.74T, and a quantitative susceptibility map was calculated using the 3D gradient-echo image. The acquired 3D microscopic images (90 μm cube voxel size) clarified the relationship between R<sub>2</sub> (transverse relaxation rate), R<sub>2</sub>* (apparent transverse relaxation rate), and magnetic susceptibility in the heart, liver, kidney, and spinal cord. The results suggested that the R<sub>2</sub>* and magnetic susceptibility in each tissue were probably due to paramagnetic iron ions originating from erythrocytes. The large R<sub>2</sub>* (~130 s<sup>-1</sup>) and magnetic susceptibility (~0.122 ppm) in the liver were attributed to its hemopoietic function. A large magnetic susceptibility (~0.116 ppm) was also observed in the spinal cord, but we conclude that more detailed future studies are needed.</p>","PeriodicalId":94126,"journal":{"name":"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histological Properties of a Chemically Fixed Human Embryo Visualized with Quantitative Susceptibility Mapping.\",\"authors\":\"Toru Shirai, Yasuhiko Terada, Katsumi Kose, Shigehito Yamada\",\"doi\":\"10.2463/mrms.tn.2023-0149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A chemically fixed Carnegie stage 23 (approximately 56 days of gestation) human embryo specimen was imaged using 3D spin-echo and gradient-echo sequences in a static magnetic field strength of 4.74T, and a quantitative susceptibility map was calculated using the 3D gradient-echo image. The acquired 3D microscopic images (90 μm cube voxel size) clarified the relationship between R<sub>2</sub> (transverse relaxation rate), R<sub>2</sub>* (apparent transverse relaxation rate), and magnetic susceptibility in the heart, liver, kidney, and spinal cord. The results suggested that the R<sub>2</sub>* and magnetic susceptibility in each tissue were probably due to paramagnetic iron ions originating from erythrocytes. The large R<sub>2</sub>* (~130 s<sup>-1</sup>) and magnetic susceptibility (~0.122 ppm) in the liver were attributed to its hemopoietic function. A large magnetic susceptibility (~0.116 ppm) was also observed in the spinal cord, but we conclude that more detailed future studies are needed.</p>\",\"PeriodicalId\":94126,\"journal\":{\"name\":\"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2463/mrms.tn.2023-0149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2463/mrms.tn.2023-0149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 4.74T 的静态磁场强度下,使用三维自旋回波和梯度回波序列对化学固定的卡内基 23 期(约妊娠 56 天)人类胚胎标本进行了成像,并使用三维梯度回波图像计算了定量磁感应强度图。获得的三维显微图像(90 微米立方体体素大小)阐明了心脏、肝脏、肾脏和脊髓的 R2(横向弛豫率)、R2*(表观横向弛豫率)和磁感应强度之间的关系。结果表明,各组织中的 R2* 和磁感应强度可能是由来自红细胞的顺磁性铁离子造成的。肝脏中较大的 R2*(约 130 s-1)和磁感应强度(约 0.122 ppm)归因于其造血功能。在脊髓中也观察到了较大的磁感应强度(约 0.116 ppm),但我们认为今后还需要进行更详细的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Histological Properties of a Chemically Fixed Human Embryo Visualized with Quantitative Susceptibility Mapping.

A chemically fixed Carnegie stage 23 (approximately 56 days of gestation) human embryo specimen was imaged using 3D spin-echo and gradient-echo sequences in a static magnetic field strength of 4.74T, and a quantitative susceptibility map was calculated using the 3D gradient-echo image. The acquired 3D microscopic images (90 μm cube voxel size) clarified the relationship between R2 (transverse relaxation rate), R2* (apparent transverse relaxation rate), and magnetic susceptibility in the heart, liver, kidney, and spinal cord. The results suggested that the R2* and magnetic susceptibility in each tissue were probably due to paramagnetic iron ions originating from erythrocytes. The large R2* (~130 s-1) and magnetic susceptibility (~0.122 ppm) in the liver were attributed to its hemopoietic function. A large magnetic susceptibility (~0.116 ppm) was also observed in the spinal cord, but we conclude that more detailed future studies are needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image-based Re-evaluation of the JCOG0911 Study Focusing on Tumor Volume and Survival, Disease Progression Diagnosis, and Radiomic Prognostication for Newly Diagnosed Glioblastoma. Improving Vessel Visibility and Applying Artificial Intelligence to Autodetect Brain Metastasis for a 3D MR Imaging Sequence Capable of Simultaneous Images with and without Blood Vessel Suppression. Identification of the Distal Dural Ring Using Three-dimensional Motion-sensitized Driven-equilibrium Prepared T1-weighted Fast Spin Echo Imaging: Application to Paraclinoid Aneurysms. In-vitro Detection of Intramammary-like Macrocalcifications Using Susceptibility-weighted MR Imaging Techniques at 1.5T. Artificial Intelligence in Obstetric and Gynecological MR Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1