{"title":"利用定量易感性图谱观察化学固定人类胚胎的组织学特性","authors":"Toru Shirai, Yasuhiko Terada, Katsumi Kose, Shigehito Yamada","doi":"10.2463/mrms.tn.2023-0149","DOIUrl":null,"url":null,"abstract":"<p><p>A chemically fixed Carnegie stage 23 (approximately 56 days of gestation) human embryo specimen was imaged using 3D spin-echo and gradient-echo sequences in a static magnetic field strength of 4.74T, and a quantitative susceptibility map was calculated using the 3D gradient-echo image. The acquired 3D microscopic images (90 μm cube voxel size) clarified the relationship between R<sub>2</sub> (transverse relaxation rate), R<sub>2</sub>* (apparent transverse relaxation rate), and magnetic susceptibility in the heart, liver, kidney, and spinal cord. The results suggested that the R<sub>2</sub>* and magnetic susceptibility in each tissue were probably due to paramagnetic iron ions originating from erythrocytes. The large R<sub>2</sub>* (~130 s<sup>-1</sup>) and magnetic susceptibility (~0.122 ppm) in the liver were attributed to its hemopoietic function. A large magnetic susceptibility (~0.116 ppm) was also observed in the spinal cord, but we conclude that more detailed future studies are needed.</p>","PeriodicalId":94126,"journal":{"name":"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histological Properties of a Chemically Fixed Human Embryo Visualized with Quantitative Susceptibility Mapping.\",\"authors\":\"Toru Shirai, Yasuhiko Terada, Katsumi Kose, Shigehito Yamada\",\"doi\":\"10.2463/mrms.tn.2023-0149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A chemically fixed Carnegie stage 23 (approximately 56 days of gestation) human embryo specimen was imaged using 3D spin-echo and gradient-echo sequences in a static magnetic field strength of 4.74T, and a quantitative susceptibility map was calculated using the 3D gradient-echo image. The acquired 3D microscopic images (90 μm cube voxel size) clarified the relationship between R<sub>2</sub> (transverse relaxation rate), R<sub>2</sub>* (apparent transverse relaxation rate), and magnetic susceptibility in the heart, liver, kidney, and spinal cord. The results suggested that the R<sub>2</sub>* and magnetic susceptibility in each tissue were probably due to paramagnetic iron ions originating from erythrocytes. The large R<sub>2</sub>* (~130 s<sup>-1</sup>) and magnetic susceptibility (~0.122 ppm) in the liver were attributed to its hemopoietic function. A large magnetic susceptibility (~0.116 ppm) was also observed in the spinal cord, but we conclude that more detailed future studies are needed.</p>\",\"PeriodicalId\":94126,\"journal\":{\"name\":\"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2463/mrms.tn.2023-0149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2463/mrms.tn.2023-0149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Histological Properties of a Chemically Fixed Human Embryo Visualized with Quantitative Susceptibility Mapping.
A chemically fixed Carnegie stage 23 (approximately 56 days of gestation) human embryo specimen was imaged using 3D spin-echo and gradient-echo sequences in a static magnetic field strength of 4.74T, and a quantitative susceptibility map was calculated using the 3D gradient-echo image. The acquired 3D microscopic images (90 μm cube voxel size) clarified the relationship between R2 (transverse relaxation rate), R2* (apparent transverse relaxation rate), and magnetic susceptibility in the heart, liver, kidney, and spinal cord. The results suggested that the R2* and magnetic susceptibility in each tissue were probably due to paramagnetic iron ions originating from erythrocytes. The large R2* (~130 s-1) and magnetic susceptibility (~0.122 ppm) in the liver were attributed to its hemopoietic function. A large magnetic susceptibility (~0.116 ppm) was also observed in the spinal cord, but we conclude that more detailed future studies are needed.