基于 DPIM 的概率分析框架,用于获取考虑到 OOR 车轮随机性的铁路车辆振动特性

IF 3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Probabilistic Engineering Mechanics Pub Date : 2024-01-01 DOI:10.1016/j.probengmech.2024.103587
Tengfei Wang , Jinsong Zhou , Wenjing Sun , Dao Gong , Kai Zhou , Zhanfei Zhang , Zhixin Liu , Guoshun Li
{"title":"基于 DPIM 的概率分析框架,用于获取考虑到 OOR 车轮随机性的铁路车辆振动特性","authors":"Tengfei Wang ,&nbsp;Jinsong Zhou ,&nbsp;Wenjing Sun ,&nbsp;Dao Gong ,&nbsp;Kai Zhou ,&nbsp;Zhanfei Zhang ,&nbsp;Zhixin Liu ,&nbsp;Guoshun Li","doi":"10.1016/j.probengmech.2024.103587","DOIUrl":null,"url":null,"abstract":"<div><p>The OOR (out-of-roundness) wheel is one of the main excitation sources causing vehicle vibration. However, the OOR wheel occurs randomly, indicating that the vibration behavior of a vehicle cannot be comprehensively evaluated using a deterministic approach. Thus, a probability analysis framework is proposed to obtain vehicle vibration characteristics while considering the randomness of the OOR wheel. The probability model of the random OOR wheel is derived by reducing the high-dimensional variables into a few independent variables of the radius, amplitude, and phase. Then, the vertical vehicle-track coupled system with OOR wheels is modelled. A DPIM (direct probability integral method) is further developed to analyze the evolution of excitation to response probabilities. Finally, the statistics of the random vibration of the vehicle are calculated. The proposed framework is verified using a numerical case. Results show that the PDF (probability density function) shape of the vehicle random vibration, induced by the Gaussian-distributed OOR wheel, deviates from the Gaussian distribution due to the nonlinear wheel/rail contact force. Instead, it exhibits a right-skewed shape, significantly impacting the dynamic performance. As the mean or coefficient of variation of the OOR wheel amplitude increases linearly, the reliability of the vehicle Sperling index experiences a quadratic or double-sloping decrease. Consequently, a maintenance threshold for OOR wheel amplitudes is given based on reliability considerations. Compared to Monte Carlo simulation, the proposed framework offers a computational efficiency improvement of at least one order of magnitude.</p></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"75 ","pages":"Article 103587"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DPIM-based probability analysis framework to obtain railway vehicle vibration characteristics considering the randomness of OOR wheel\",\"authors\":\"Tengfei Wang ,&nbsp;Jinsong Zhou ,&nbsp;Wenjing Sun ,&nbsp;Dao Gong ,&nbsp;Kai Zhou ,&nbsp;Zhanfei Zhang ,&nbsp;Zhixin Liu ,&nbsp;Guoshun Li\",\"doi\":\"10.1016/j.probengmech.2024.103587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The OOR (out-of-roundness) wheel is one of the main excitation sources causing vehicle vibration. However, the OOR wheel occurs randomly, indicating that the vibration behavior of a vehicle cannot be comprehensively evaluated using a deterministic approach. Thus, a probability analysis framework is proposed to obtain vehicle vibration characteristics while considering the randomness of the OOR wheel. The probability model of the random OOR wheel is derived by reducing the high-dimensional variables into a few independent variables of the radius, amplitude, and phase. Then, the vertical vehicle-track coupled system with OOR wheels is modelled. A DPIM (direct probability integral method) is further developed to analyze the evolution of excitation to response probabilities. Finally, the statistics of the random vibration of the vehicle are calculated. The proposed framework is verified using a numerical case. Results show that the PDF (probability density function) shape of the vehicle random vibration, induced by the Gaussian-distributed OOR wheel, deviates from the Gaussian distribution due to the nonlinear wheel/rail contact force. Instead, it exhibits a right-skewed shape, significantly impacting the dynamic performance. As the mean or coefficient of variation of the OOR wheel amplitude increases linearly, the reliability of the vehicle Sperling index experiences a quadratic or double-sloping decrease. Consequently, a maintenance threshold for OOR wheel amplitudes is given based on reliability considerations. Compared to Monte Carlo simulation, the proposed framework offers a computational efficiency improvement of at least one order of magnitude.</p></div>\",\"PeriodicalId\":54583,\"journal\":{\"name\":\"Probabilistic Engineering Mechanics\",\"volume\":\"75 \",\"pages\":\"Article 103587\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probabilistic Engineering Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266892024000092\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266892024000092","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

OOR(失圆)车轮是引起车辆振动的主要激励源之一。然而,OOR 车轮是随机出现的,这表明无法使用确定性方法对车辆的振动行为进行全面评估。因此,本文提出了一种概率分析框架,在考虑 OOR 车轮随机性的同时获取车辆振动特性。通过将高维变量简化为半径、振幅和相位等几个独立变量,得出了随机 OOR 车轮的概率模型。然后,对带有 OOR 轮的垂直车辆-轨道耦合系统进行建模。进一步开发了 DPIM(直接概率积分法)来分析激励到响应概率的演变。最后,计算车辆随机振动的统计数据。利用数值案例对所提出的框架进行了验证。结果表明,由高斯分布的 OOR 车轮诱发的车辆随机振动的 PDF(概率密度函数)形状偏离了高斯分布,这是由于车轮/轨道接触力的非线性造成的。相反,它呈现出右偏的形状,对动态性能产生了重大影响。当 OOR 轮振幅的平均值或变异系数线性增加时,车辆 Sperling 指数的可靠性会出现二次或双斜率下降。因此,基于可靠性考虑,给出了 OOR 车轮振幅的维护阈值。与蒙特卡罗模拟相比,所提出的框架至少提高了一个数量级的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A DPIM-based probability analysis framework to obtain railway vehicle vibration characteristics considering the randomness of OOR wheel

The OOR (out-of-roundness) wheel is one of the main excitation sources causing vehicle vibration. However, the OOR wheel occurs randomly, indicating that the vibration behavior of a vehicle cannot be comprehensively evaluated using a deterministic approach. Thus, a probability analysis framework is proposed to obtain vehicle vibration characteristics while considering the randomness of the OOR wheel. The probability model of the random OOR wheel is derived by reducing the high-dimensional variables into a few independent variables of the radius, amplitude, and phase. Then, the vertical vehicle-track coupled system with OOR wheels is modelled. A DPIM (direct probability integral method) is further developed to analyze the evolution of excitation to response probabilities. Finally, the statistics of the random vibration of the vehicle are calculated. The proposed framework is verified using a numerical case. Results show that the PDF (probability density function) shape of the vehicle random vibration, induced by the Gaussian-distributed OOR wheel, deviates from the Gaussian distribution due to the nonlinear wheel/rail contact force. Instead, it exhibits a right-skewed shape, significantly impacting the dynamic performance. As the mean or coefficient of variation of the OOR wheel amplitude increases linearly, the reliability of the vehicle Sperling index experiences a quadratic or double-sloping decrease. Consequently, a maintenance threshold for OOR wheel amplitudes is given based on reliability considerations. Compared to Monte Carlo simulation, the proposed framework offers a computational efficiency improvement of at least one order of magnitude.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probabilistic Engineering Mechanics
Probabilistic Engineering Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
15.40%
发文量
98
审稿时长
13.5 months
期刊介绍: This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.
期刊最新文献
Real-time anomaly detection of the stochastically excited systems on spherical (S2) manifold Nonprobabilistic time-dependent reliability analysis for uncertain structures under interval process loads Fractional-order filter approximations for efficient stochastic response determination of wind-excited linear structural systems Seismic reliability analysis using Subset Simulation enhanced with an explorative adaptive conditional sampling algorithm Efficient optimization-based method for simultaneous calibration of load and resistance factors considering multiple target reliability indices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1