{"title":"用于分析竞争风险事件的 Dirichlet 过程混合回归模型","authors":"Francesco Ungolo , Edwin R. van den Heuvel","doi":"10.1016/j.insmatheco.2024.02.004","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a regression model for the analysis of competing risk events. The joint distribution of the time to these events is flexibly characterized by a random effect which follows a discrete probability distribution drawn from a Dirichlet Process, explaining their variability. This entails an additional layer of flexibility of this joint model, whose inference is robust with respect to the misspecification of the distribution of the random effects. The model is analysed in a fully Bayesian setting, yielding a flexible Dirichlet Process Mixture model for the joint distribution of the time to events. An efficient MCMC sampler is developed for inference. The modelling approach is applied to the empirical analysis of the surrending risk in a US life insurance portfolio previously analysed by <span>Milhaud and Dutang (2018)</span>. The approach yields an improved predictive performance of the surrending rates.</p></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"116 ","pages":"Pages 95-113"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167668724000295/pdfft?md5=9e941f043f3f798aedb74fba46ba6dc0&pid=1-s2.0-S0167668724000295-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A Dirichlet process mixture regression model for the analysis of competing risk events\",\"authors\":\"Francesco Ungolo , Edwin R. van den Heuvel\",\"doi\":\"10.1016/j.insmatheco.2024.02.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a regression model for the analysis of competing risk events. The joint distribution of the time to these events is flexibly characterized by a random effect which follows a discrete probability distribution drawn from a Dirichlet Process, explaining their variability. This entails an additional layer of flexibility of this joint model, whose inference is robust with respect to the misspecification of the distribution of the random effects. The model is analysed in a fully Bayesian setting, yielding a flexible Dirichlet Process Mixture model for the joint distribution of the time to events. An efficient MCMC sampler is developed for inference. The modelling approach is applied to the empirical analysis of the surrending risk in a US life insurance portfolio previously analysed by <span>Milhaud and Dutang (2018)</span>. The approach yields an improved predictive performance of the surrending rates.</p></div>\",\"PeriodicalId\":54974,\"journal\":{\"name\":\"Insurance Mathematics & Economics\",\"volume\":\"116 \",\"pages\":\"Pages 95-113\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167668724000295/pdfft?md5=9e941f043f3f798aedb74fba46ba6dc0&pid=1-s2.0-S0167668724000295-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insurance Mathematics & Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167668724000295\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668724000295","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
A Dirichlet process mixture regression model for the analysis of competing risk events
We develop a regression model for the analysis of competing risk events. The joint distribution of the time to these events is flexibly characterized by a random effect which follows a discrete probability distribution drawn from a Dirichlet Process, explaining their variability. This entails an additional layer of flexibility of this joint model, whose inference is robust with respect to the misspecification of the distribution of the random effects. The model is analysed in a fully Bayesian setting, yielding a flexible Dirichlet Process Mixture model for the joint distribution of the time to events. An efficient MCMC sampler is developed for inference. The modelling approach is applied to the empirical analysis of the surrending risk in a US life insurance portfolio previously analysed by Milhaud and Dutang (2018). The approach yields an improved predictive performance of the surrending rates.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.