{"title":"公共物品博弈中纳什均衡的严密不可逼近性","authors":"Jérémi Do Dinh , Alexandros Hollender","doi":"10.1016/j.ipl.2024.106486","DOIUrl":null,"url":null,"abstract":"<div><p>We study public goods games, a type of game where every player has to decide whether or not to produce a good which is <em>public</em>, i.e., neighboring players can also benefit from it. Specifically, we consider a setting where the good is indivisible and where the neighborhood structure is represented by a directed graph, with the players being the nodes. Papadimitriou and Peng (2023) recently showed that in this setting computing mixed Nash equilibria is <span>PPAD</span>-hard, and that this remains the case even for <em>ε</em>-well-supported approximate equilibria for some sufficiently small constant <em>ε</em>. In this work, we strengthen this inapproximability result by showing that the problem remains <span>PPAD</span>-hard for any non-trivial approximation parameter <em>ε</em>.</p></div>","PeriodicalId":56290,"journal":{"name":"Information Processing Letters","volume":"186 ","pages":"Article 106486"},"PeriodicalIF":0.7000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020019024000164/pdfft?md5=4401d2c9ad85ff27d95ed156a73d6f7a&pid=1-s2.0-S0020019024000164-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Tight inapproximability of Nash equilibria in public goods games\",\"authors\":\"Jérémi Do Dinh , Alexandros Hollender\",\"doi\":\"10.1016/j.ipl.2024.106486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study public goods games, a type of game where every player has to decide whether or not to produce a good which is <em>public</em>, i.e., neighboring players can also benefit from it. Specifically, we consider a setting where the good is indivisible and where the neighborhood structure is represented by a directed graph, with the players being the nodes. Papadimitriou and Peng (2023) recently showed that in this setting computing mixed Nash equilibria is <span>PPAD</span>-hard, and that this remains the case even for <em>ε</em>-well-supported approximate equilibria for some sufficiently small constant <em>ε</em>. In this work, we strengthen this inapproximability result by showing that the problem remains <span>PPAD</span>-hard for any non-trivial approximation parameter <em>ε</em>.</p></div>\",\"PeriodicalId\":56290,\"journal\":{\"name\":\"Information Processing Letters\",\"volume\":\"186 \",\"pages\":\"Article 106486\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0020019024000164/pdfft?md5=4401d2c9ad85ff27d95ed156a73d6f7a&pid=1-s2.0-S0020019024000164-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020019024000164\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020019024000164","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Tight inapproximability of Nash equilibria in public goods games
We study public goods games, a type of game where every player has to decide whether or not to produce a good which is public, i.e., neighboring players can also benefit from it. Specifically, we consider a setting where the good is indivisible and where the neighborhood structure is represented by a directed graph, with the players being the nodes. Papadimitriou and Peng (2023) recently showed that in this setting computing mixed Nash equilibria is PPAD-hard, and that this remains the case even for ε-well-supported approximate equilibria for some sufficiently small constant ε. In this work, we strengthen this inapproximability result by showing that the problem remains PPAD-hard for any non-trivial approximation parameter ε.
期刊介绍:
Information Processing Letters invites submission of original research articles that focus on fundamental aspects of information processing and computing. This naturally includes work in the broadly understood field of theoretical computer science; although papers in all areas of scientific inquiry will be given consideration, provided that they describe research contributions credibly motivated by applications to computing and involve rigorous methodology. High quality experimental papers that address topics of sufficiently broad interest may also be considered.
Since its inception in 1971, Information Processing Letters has served as a forum for timely dissemination of short, concise and focused research contributions. Continuing with this tradition, and to expedite the reviewing process, manuscripts are generally limited in length to nine pages when they appear in print.