{"title":"Livogrit 通过调节氧化还原平衡,防止胺碘酮对人肝脏(HepG2)细胞和草履虫实验模型的毒性。","authors":"Acharya Balkrishna, Vivek Gohel, Nishit Pathak, Kunal Bhattacharya, Rishabh Dev, Anurag Varshney","doi":"10.1080/01480545.2024.2320189","DOIUrl":null,"url":null,"abstract":"<p><p>Treatment with cationic amphiphilic drugs like Amiodarone leads to development of phospholipidosis, a type of lysosomal storage disorder characterized by excessive deposition of phospholipids. Such disorder in liver enhances accumulation of drugs and its metabolites, and dysregulates lipid profiles, which subsequently leads to hepatotoxicity. In the present study, we assessed pharmacological effects of herbal medicine, Livogrit, against hepatic phospholipidosis-induced toxicity. Human liver (HepG2) cells and <i>in vivo</i> model of <i>Caenorhabditis elegans</i> (N2 and CF1553 strains) were used to study effect of Livogrit on Amiodarone-induced phospholipidosis. In HepG2 cells, Livogrit treatment displayed enhanced uptake of acidic pH-based stains and reduced phospholipid accumulation, oxidative stress, AST, ALT, cholesterol levels, and gene expression of SCD-1 and LSS. Protein levels of LPLA2 were also normalized. Livogrit treatment restored Pgp functionality which led to decreased cellular accumulation of Amiodarone as observed by UHPLC analysis. In <i>C. elegans</i>, Livogrit prevented ROS generation, fat-6/7 gene overexpression, and lysosomal trapping of Amiodarone in N2 strain. SOD-3::GFP expression in CF1553 strain normalized by Livogrit treatment. Livogrit regulates phospholipidosis by regulation of redox homeostasis, phospholipid anabolism, and Pgp functionality hindered by lysosomal trapping of Amiodarone. Livogrit could be a potential therapeutic intervention for amelioration of drug-induced phospholipidosis and prevent hepatotoxicity.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"987-1003"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Livogrit prevents Amiodarone-induced toxicity in experimental model of human liver (HepG2) cells and <i>Caenorhabditis elegans</i> by regulating redox homeostasis.\",\"authors\":\"Acharya Balkrishna, Vivek Gohel, Nishit Pathak, Kunal Bhattacharya, Rishabh Dev, Anurag Varshney\",\"doi\":\"10.1080/01480545.2024.2320189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treatment with cationic amphiphilic drugs like Amiodarone leads to development of phospholipidosis, a type of lysosomal storage disorder characterized by excessive deposition of phospholipids. Such disorder in liver enhances accumulation of drugs and its metabolites, and dysregulates lipid profiles, which subsequently leads to hepatotoxicity. In the present study, we assessed pharmacological effects of herbal medicine, Livogrit, against hepatic phospholipidosis-induced toxicity. Human liver (HepG2) cells and <i>in vivo</i> model of <i>Caenorhabditis elegans</i> (N2 and CF1553 strains) were used to study effect of Livogrit on Amiodarone-induced phospholipidosis. In HepG2 cells, Livogrit treatment displayed enhanced uptake of acidic pH-based stains and reduced phospholipid accumulation, oxidative stress, AST, ALT, cholesterol levels, and gene expression of SCD-1 and LSS. Protein levels of LPLA2 were also normalized. Livogrit treatment restored Pgp functionality which led to decreased cellular accumulation of Amiodarone as observed by UHPLC analysis. In <i>C. elegans</i>, Livogrit prevented ROS generation, fat-6/7 gene overexpression, and lysosomal trapping of Amiodarone in N2 strain. SOD-3::GFP expression in CF1553 strain normalized by Livogrit treatment. Livogrit regulates phospholipidosis by regulation of redox homeostasis, phospholipid anabolism, and Pgp functionality hindered by lysosomal trapping of Amiodarone. Livogrit could be a potential therapeutic intervention for amelioration of drug-induced phospholipidosis and prevent hepatotoxicity.</p>\",\"PeriodicalId\":11333,\"journal\":{\"name\":\"Drug and Chemical Toxicology\",\"volume\":\" \",\"pages\":\"987-1003\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug and Chemical Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01480545.2024.2320189\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2024.2320189","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Livogrit prevents Amiodarone-induced toxicity in experimental model of human liver (HepG2) cells and Caenorhabditis elegans by regulating redox homeostasis.
Treatment with cationic amphiphilic drugs like Amiodarone leads to development of phospholipidosis, a type of lysosomal storage disorder characterized by excessive deposition of phospholipids. Such disorder in liver enhances accumulation of drugs and its metabolites, and dysregulates lipid profiles, which subsequently leads to hepatotoxicity. In the present study, we assessed pharmacological effects of herbal medicine, Livogrit, against hepatic phospholipidosis-induced toxicity. Human liver (HepG2) cells and in vivo model of Caenorhabditis elegans (N2 and CF1553 strains) were used to study effect of Livogrit on Amiodarone-induced phospholipidosis. In HepG2 cells, Livogrit treatment displayed enhanced uptake of acidic pH-based stains and reduced phospholipid accumulation, oxidative stress, AST, ALT, cholesterol levels, and gene expression of SCD-1 and LSS. Protein levels of LPLA2 were also normalized. Livogrit treatment restored Pgp functionality which led to decreased cellular accumulation of Amiodarone as observed by UHPLC analysis. In C. elegans, Livogrit prevented ROS generation, fat-6/7 gene overexpression, and lysosomal trapping of Amiodarone in N2 strain. SOD-3::GFP expression in CF1553 strain normalized by Livogrit treatment. Livogrit regulates phospholipidosis by regulation of redox homeostasis, phospholipid anabolism, and Pgp functionality hindered by lysosomal trapping of Amiodarone. Livogrit could be a potential therapeutic intervention for amelioration of drug-induced phospholipidosis and prevent hepatotoxicity.
期刊介绍:
Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal.
Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.