重新建立发芽番茄(Solanum lycopersicum)种子的干燥耐受性

IF 2.1 3区 生物学 Q2 PLANT SCIENCES Seed Science Research Pub Date : 2024-03-01 DOI:10.1017/s0960258524000047
Naoto Sano, Jerome Verdier
{"title":"重新建立发芽番茄(Solanum lycopersicum)种子的干燥耐受性","authors":"Naoto Sano, Jerome Verdier","doi":"10.1017/s0960258524000047","DOIUrl":null,"url":null,"abstract":"<p>Desiccation tolerance (DT) of seeds, one of the plant's environmental adaptation mechanisms, allows them to survive as seeds in a quiescent state under extremely water-deficient conditions during the plant's life cycle, followed by seed germination and seedling establishment under favourable water conditions. The seed-DT is lost after radicle emergence; however, there is a developmental period called the ‘DT window’ during which the germinating seeds can re-induce DT following a cue from their ambient low water potential (i.e. mild osmotic stress). The DT re-inducibility within the DT window has been used as a model biosystem for understanding molecular mechanisms that activate/supress DT in a number of plant species. However, the characteristics of the DT window for species particularly important to the agroindustry are still largely fragmented. Here, physiological analyses were performed, aiming to elucidate the properties of the DT window in tomato, a model species for Solanaceae, holding a key strategic position for the seed industry and commercial use around the world. We revealed that (i) the DT window of tomato seeds is closed when the developing radicle reaches about 4 mm after germination, (ii) the most effective ambient water potential to re-induce DT into seeds is about −1.5 MPa and (iii) there is organ specificity of DT re-induction with hypocotyls, showing a longer DT window than cotyledons and roots in post-germination seeds.</p>","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The re-establishment of desiccation tolerance in germinated tomato (Solanum lycopersicum) seeds\",\"authors\":\"Naoto Sano, Jerome Verdier\",\"doi\":\"10.1017/s0960258524000047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Desiccation tolerance (DT) of seeds, one of the plant's environmental adaptation mechanisms, allows them to survive as seeds in a quiescent state under extremely water-deficient conditions during the plant's life cycle, followed by seed germination and seedling establishment under favourable water conditions. The seed-DT is lost after radicle emergence; however, there is a developmental period called the ‘DT window’ during which the germinating seeds can re-induce DT following a cue from their ambient low water potential (i.e. mild osmotic stress). The DT re-inducibility within the DT window has been used as a model biosystem for understanding molecular mechanisms that activate/supress DT in a number of plant species. However, the characteristics of the DT window for species particularly important to the agroindustry are still largely fragmented. Here, physiological analyses were performed, aiming to elucidate the properties of the DT window in tomato, a model species for Solanaceae, holding a key strategic position for the seed industry and commercial use around the world. We revealed that (i) the DT window of tomato seeds is closed when the developing radicle reaches about 4 mm after germination, (ii) the most effective ambient water potential to re-induce DT into seeds is about −1.5 MPa and (iii) there is organ specificity of DT re-induction with hypocotyls, showing a longer DT window than cotyledons and roots in post-germination seeds.</p>\",\"PeriodicalId\":21711,\"journal\":{\"name\":\"Seed Science Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seed Science Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/s0960258524000047\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seed Science Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/s0960258524000047","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

种子的干燥耐受性(DT)是植物的环境适应机制之一,可使种子在植物生命周期中的极度缺水条件下以静止状态存活,然后在有利的水条件下萌发和成苗。种子 DT 在胚根萌发后就会消失;不过,有一个称为 "DT 窗口 "的发育期,在此期间,萌发的种子可以根据周围低水势(即轻微的渗透胁迫)的提示重新诱导 DT。DT 窗口内的 DT 再诱导性已被用作一个模型生物系统,用于了解激活/抑制一些植物物种 DT 的分子机制。然而,对于农业工业特别重要的物种来说,DT 窗口的特征在很大程度上仍然是零散的。番茄是茄科植物的典范物种,在全球种子产业和商业应用中具有重要的战略地位,本文对其进行了生理分析,旨在阐明其 DT 窗口的特性。我们发现:(i) 番茄种子的 DT 窗口在萌发后发育的胚根长到约 4 毫米时关闭;(ii) 重新诱导种子 DT 的最有效环境水势约为-1.5 兆帕;(iii) DT 的重新诱导具有器官特异性,在萌发后的种子中,下胚轴的 DT 窗口比子叶和根长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The re-establishment of desiccation tolerance in germinated tomato (Solanum lycopersicum) seeds

Desiccation tolerance (DT) of seeds, one of the plant's environmental adaptation mechanisms, allows them to survive as seeds in a quiescent state under extremely water-deficient conditions during the plant's life cycle, followed by seed germination and seedling establishment under favourable water conditions. The seed-DT is lost after radicle emergence; however, there is a developmental period called the ‘DT window’ during which the germinating seeds can re-induce DT following a cue from their ambient low water potential (i.e. mild osmotic stress). The DT re-inducibility within the DT window has been used as a model biosystem for understanding molecular mechanisms that activate/supress DT in a number of plant species. However, the characteristics of the DT window for species particularly important to the agroindustry are still largely fragmented. Here, physiological analyses were performed, aiming to elucidate the properties of the DT window in tomato, a model species for Solanaceae, holding a key strategic position for the seed industry and commercial use around the world. We revealed that (i) the DT window of tomato seeds is closed when the developing radicle reaches about 4 mm after germination, (ii) the most effective ambient water potential to re-induce DT into seeds is about −1.5 MPa and (iii) there is organ specificity of DT re-induction with hypocotyls, showing a longer DT window than cotyledons and roots in post-germination seeds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Seed Science Research
Seed Science Research 生物-植物科学
CiteScore
3.60
自引率
4.80%
发文量
23
审稿时长
>12 weeks
期刊介绍: Seed Science Research, the official journal of the International Society for Seed Science, is a leading international journal featuring high-quality original papers and review articles on the fundamental aspects of seed science, reviewed by internationally distinguished editors. The emphasis is on the physiology, biochemistry, molecular biology and ecology of seeds.
期刊最新文献
Redox imbalance accompanies loss of viability in seeds of two cacti species buried in situ Phylogenetic trends in TZ staining analysis of six deep dormancy seeds Likelihood ratio test for the analysis of germination percentages Interactions between seed functional traits and environmental factors and their influence on germination performance of Australian native species The re-establishment of desiccation tolerance in germinated tomato (Solanum lycopersicum) seeds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1