基于声发射的轴向受压混凝土填充钢管桩柱损伤分析

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Damage Mechanics Pub Date : 2024-02-29 DOI:10.1177/10567895241234002
Yanjun Chang, Enchao Rong, Wanli Chen, Xiaojun Ke, Kaizhong Xie
{"title":"基于声发射的轴向受压混凝土填充钢管桩柱损伤分析","authors":"Yanjun Chang, Enchao Rong, Wanli Chen, Xiaojun Ke, Kaizhong Xie","doi":"10.1177/10567895241234002","DOIUrl":null,"url":null,"abstract":"Concrete-filled steel tube (CFST) widely applied in engineering structures due to its superior behavior requires monitoring and assessment for damage level. Here, the acoustic emission (AE) technique was used to monitor the fracture process of concrete core in CFST stub columns subjected to axial compression. Test and analyzed results show that the damage process of CFST specimens can be divided into four stages: compaction, elastic-plastic stage, strengthening and secondary strengthening. In the elastic-plastic stage, the evolutionary features of the AE event rate, cumulative energy, Ib-value and crack classification are capable of providing an early warning for cracked concrete core. Full crack propagation can be identified by the rapid increase in the proportion of shear cracks near the inflection point of load, which is impermissible in engineering structures. According to the analyses of the AE event rate and signal intensity in the elastic-plastic stage, the confinement of steel tube with thicker wall thickness or higher strength is delayed, which implies that this confinement is suggested to be triggered early. It is indicated that the AE technique has the potential to monitor and evaluate the damage process of CFST stub columns under axial compression, which can provide additional insight into the failure mechanism and assist in the scheme of repairs.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"261 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage analysis of axially compressed concrete-filled steel tube stub columns based on acoustic emission\",\"authors\":\"Yanjun Chang, Enchao Rong, Wanli Chen, Xiaojun Ke, Kaizhong Xie\",\"doi\":\"10.1177/10567895241234002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concrete-filled steel tube (CFST) widely applied in engineering structures due to its superior behavior requires monitoring and assessment for damage level. Here, the acoustic emission (AE) technique was used to monitor the fracture process of concrete core in CFST stub columns subjected to axial compression. Test and analyzed results show that the damage process of CFST specimens can be divided into four stages: compaction, elastic-plastic stage, strengthening and secondary strengthening. In the elastic-plastic stage, the evolutionary features of the AE event rate, cumulative energy, Ib-value and crack classification are capable of providing an early warning for cracked concrete core. Full crack propagation can be identified by the rapid increase in the proportion of shear cracks near the inflection point of load, which is impermissible in engineering structures. According to the analyses of the AE event rate and signal intensity in the elastic-plastic stage, the confinement of steel tube with thicker wall thickness or higher strength is delayed, which implies that this confinement is suggested to be triggered early. It is indicated that the AE technique has the potential to monitor and evaluate the damage process of CFST stub columns under axial compression, which can provide additional insight into the failure mechanism and assist in the scheme of repairs.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":\"261 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895241234002\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895241234002","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

混凝土填充钢管(CFST)因其优异的性能被广泛应用于工程结构中,因此需要对其损坏程度进行监测和评估。本文采用声发射(AE)技术来监测受到轴向压缩的 CFST 存根柱混凝土芯部的断裂过程。试验和分析结果表明,CFST 试件的损坏过程可分为四个阶段:压实阶段、弹塑性阶段、加固阶段和二次加固阶段。在弹塑性阶段,AE 事件率、累积能量、Ib 值和裂缝分类的演变特征能够为混凝土核心开裂提供预警。在荷载拐点附近,剪切裂缝的比例迅速增加,这在工程结构中是不允许的,因此可以确定裂缝已完全扩展。根据弹塑性阶段的 AE 事件速率和信号强度分析,壁厚较厚或强度较高的钢管的约束延迟,这意味着这种约束建议尽早触发。这表明,AE 技术具有监测和评估 CFST 存根柱在轴向压缩下的破坏过程的潜力,可为了解破坏机制提供更多信息,并有助于制定修复方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Damage analysis of axially compressed concrete-filled steel tube stub columns based on acoustic emission
Concrete-filled steel tube (CFST) widely applied in engineering structures due to its superior behavior requires monitoring and assessment for damage level. Here, the acoustic emission (AE) technique was used to monitor the fracture process of concrete core in CFST stub columns subjected to axial compression. Test and analyzed results show that the damage process of CFST specimens can be divided into four stages: compaction, elastic-plastic stage, strengthening and secondary strengthening. In the elastic-plastic stage, the evolutionary features of the AE event rate, cumulative energy, Ib-value and crack classification are capable of providing an early warning for cracked concrete core. Full crack propagation can be identified by the rapid increase in the proportion of shear cracks near the inflection point of load, which is impermissible in engineering structures. According to the analyses of the AE event rate and signal intensity in the elastic-plastic stage, the confinement of steel tube with thicker wall thickness or higher strength is delayed, which implies that this confinement is suggested to be triggered early. It is indicated that the AE technique has the potential to monitor and evaluate the damage process of CFST stub columns under axial compression, which can provide additional insight into the failure mechanism and assist in the scheme of repairs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Use of fabric tensors in damage and healing mechanics of materials Mechanically consistent continuum damage model for anisotropic composites including damage deactivation Damage evaluation of interfacial materials based on M-integral Damage and permeability of gassy coal in loading – Unloading path Study on mechanical properties and strength criterion of mudstone under loading and unloading considering pre-peak damage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1