{"title":"关于演化的极亮贫金属恒星 HD 1936 的化学组成","authors":"Şeyma Çalışkan, Jannat Mushreq Kamil Alazzawi, Yahya Nasolo","doi":"10.1002/asna.20230048","DOIUrl":null,"url":null,"abstract":"<p>We present chemical abundances of the very bright metal-poor star HD 1936 based on high-resolution and high SNR spectra from AUKR. We obtain the abundances of 29 atomic species with atomic numbers between 3 and 63. In this context, the derived lithium abundance of 1.01 is consistent with the thin Li plateau observed in lower red giant branch stars. The star is a carbon-normal with a ratio of −0.31, just like other low-luminosity red giants on the thin Li plateau. We find the ratios of [Eu/Fe] = 0.43 and [Ba/Eu] = −0.64, indicating very little s-process contamination. These ratios allow us to classify the star as a moderately r-process-enhanced (r-I) metal-poor star for the first time. It is worth mentioning that the star has a metallicity of −1.74, a [Cu/Fe] of −0.74, a [Zn/Fe] of 0.04, and a [Mg/C] of 0.69. The results suggest that it may be a second-generation star formed in a multi-enriched environment, rather than being a descendant of very massive first-generation stars. A last point worth mentioning is the possibility that HD 1936 may host a sub-stellar component with a mass of <span></span><math>\n <semantics>\n <mrow>\n <mn>18.35</mn>\n <msub>\n <mi>M</mi>\n <mi>J</mi>\n </msub>\n </mrow>\n <annotation>$$ 18.35{M}_{\\mathrm{J}} $$</annotation>\n </semantics></math>. Although our study does not confirm or deny this, we briefly discuss the possibility of the star hosting a planet.</p>","PeriodicalId":55442,"journal":{"name":"Astronomische Nachrichten","volume":"345 4","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the chemical composition of the evolved very bright metal-poor star HD 1936\",\"authors\":\"Şeyma Çalışkan, Jannat Mushreq Kamil Alazzawi, Yahya Nasolo\",\"doi\":\"10.1002/asna.20230048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present chemical abundances of the very bright metal-poor star HD 1936 based on high-resolution and high SNR spectra from AUKR. We obtain the abundances of 29 atomic species with atomic numbers between 3 and 63. In this context, the derived lithium abundance of 1.01 is consistent with the thin Li plateau observed in lower red giant branch stars. The star is a carbon-normal with a ratio of −0.31, just like other low-luminosity red giants on the thin Li plateau. We find the ratios of [Eu/Fe] = 0.43 and [Ba/Eu] = −0.64, indicating very little s-process contamination. These ratios allow us to classify the star as a moderately r-process-enhanced (r-I) metal-poor star for the first time. It is worth mentioning that the star has a metallicity of −1.74, a [Cu/Fe] of −0.74, a [Zn/Fe] of 0.04, and a [Mg/C] of 0.69. The results suggest that it may be a second-generation star formed in a multi-enriched environment, rather than being a descendant of very massive first-generation stars. A last point worth mentioning is the possibility that HD 1936 may host a sub-stellar component with a mass of <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>18.35</mn>\\n <msub>\\n <mi>M</mi>\\n <mi>J</mi>\\n </msub>\\n </mrow>\\n <annotation>$$ 18.35{M}_{\\\\mathrm{J}} $$</annotation>\\n </semantics></math>. Although our study does not confirm or deny this, we briefly discuss the possibility of the star hosting a planet.</p>\",\"PeriodicalId\":55442,\"journal\":{\"name\":\"Astronomische Nachrichten\",\"volume\":\"345 4\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomische Nachrichten\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asna.20230048\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomische Nachrichten","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asna.20230048","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
On the chemical composition of the evolved very bright metal-poor star HD 1936
We present chemical abundances of the very bright metal-poor star HD 1936 based on high-resolution and high SNR spectra from AUKR. We obtain the abundances of 29 atomic species with atomic numbers between 3 and 63. In this context, the derived lithium abundance of 1.01 is consistent with the thin Li plateau observed in lower red giant branch stars. The star is a carbon-normal with a ratio of −0.31, just like other low-luminosity red giants on the thin Li plateau. We find the ratios of [Eu/Fe] = 0.43 and [Ba/Eu] = −0.64, indicating very little s-process contamination. These ratios allow us to classify the star as a moderately r-process-enhanced (r-I) metal-poor star for the first time. It is worth mentioning that the star has a metallicity of −1.74, a [Cu/Fe] of −0.74, a [Zn/Fe] of 0.04, and a [Mg/C] of 0.69. The results suggest that it may be a second-generation star formed in a multi-enriched environment, rather than being a descendant of very massive first-generation stars. A last point worth mentioning is the possibility that HD 1936 may host a sub-stellar component with a mass of . Although our study does not confirm or deny this, we briefly discuss the possibility of the star hosting a planet.
期刊介绍:
Astronomische Nachrichten, founded in 1821 by H. C. Schumacher, is the oldest astronomical journal worldwide still being published. Famous astronomical discoveries and important papers on astronomy and astrophysics published in more than 300 volumes of the journal give an outstanding representation of the progress of astronomical research over the last 180 years. Today, Astronomical Notes/ Astronomische Nachrichten publishes articles in the field of observational and theoretical astrophysics and related topics in solar-system and solar physics. Additional, papers on astronomical instrumentation ground-based and space-based as well as papers about numerical astrophysical techniques and supercomputer modelling are covered. Papers can be completed by short video sequences in the electronic version. Astronomical Notes/ Astronomische Nachrichten also publishes special issues of meeting proceedings.