{"title":"高维度均值线性假设的标度不变检验","authors":"","doi":"10.1007/s00362-024-01530-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we propose a new scale-invariant test for linear hypothesis of mean vectors with heteroscedasticity in high-dimensional settings. Most existing tests impose strong conditions on covariance matrices so that null distributions of their tests are asymptotically normal, which restricts the application of test procedures. However, our proposed test has different null distributions under mild conditions. Additionally, the well-known Welch-Satterthwaite chi-square approximation we adopted can automatically mimic the shapes of the null distributions of the test statistic. The performances of the test are illustrated by simulation and real data in finite samples which show that it has robustness and is more powerful than three competitors.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"46 22 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A scale-invariant test for linear hypothesis of means in high dimensions\",\"authors\":\"\",\"doi\":\"10.1007/s00362-024-01530-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, we propose a new scale-invariant test for linear hypothesis of mean vectors with heteroscedasticity in high-dimensional settings. Most existing tests impose strong conditions on covariance matrices so that null distributions of their tests are asymptotically normal, which restricts the application of test procedures. However, our proposed test has different null distributions under mild conditions. Additionally, the well-known Welch-Satterthwaite chi-square approximation we adopted can automatically mimic the shapes of the null distributions of the test statistic. The performances of the test are illustrated by simulation and real data in finite samples which show that it has robustness and is more powerful than three competitors.</p>\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"46 22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-024-01530-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-024-01530-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A scale-invariant test for linear hypothesis of means in high dimensions
Abstract
In this paper, we propose a new scale-invariant test for linear hypothesis of mean vectors with heteroscedasticity in high-dimensional settings. Most existing tests impose strong conditions on covariance matrices so that null distributions of their tests are asymptotically normal, which restricts the application of test procedures. However, our proposed test has different null distributions under mild conditions. Additionally, the well-known Welch-Satterthwaite chi-square approximation we adopted can automatically mimic the shapes of the null distributions of the test statistic. The performances of the test are illustrated by simulation and real data in finite samples which show that it has robustness and is more powerful than three competitors.
期刊介绍:
The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.