{"title":"有关远程监控癫痫发作检测设备的文献系统性综述","authors":"K. Komal , F. Cleary , J.S.G. Wells , L. Bennett","doi":"10.1016/j.eplepsyres.2024.107334","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Early detection and alert notification of an impending seizure for people with epilepsy have the potential to reduce Sudden Unexpected Death in Epilepsy (SUDEP). Current remote monitoring seizure detection devices for people with epilepsy are designed to support real-time monitoring of their vital health parameters linked to seizure alert notification. An understanding of the rapidly growing literature on remote seizure detection devices is essential to address the needs of people with epilepsy and their carers.</p></div><div><h3>Aim</h3><p>This review aims to examine the technical characteristics, device performance, user preference, and effectiveness of remote monitoring seizure detection devices.</p></div><div><h3>Methodology</h3><p>A systematic review referenced to PRISMA guidelines was used.</p></div><div><h3>Results</h3><p>A total of 1095 papers were identified from the initial search with 30 papers included in the review. Sixteen non-invasive remote monitoring seizure detection devices are currently available. Such seizure detection devices were found to have inbuilt intelligent sensor functionality to monitor electroencephalography, muscle movement, and accelerometer-based motion movement for detecting seizures remotely. Current challenges of these devices for people with epilepsy include skin irritation due to the type of patch electrode used and false alarm notifications, particularly during physical activity. The tight-fitted accelerometer-type devices are reported as uncomfortable from a wearability perspective for long-term monitoring. Also, continuous recording of physiological signals and triggering alert notifications significantly reduce the battery life of the devices. The literature highlights that 3.2 out of 5 people with epilepsy are not using seizure detection devices because of the cost and appearance of the device.</p></div><div><h3>Conclusion</h3><p>Seizure detection devices can potentially reduce morbidity and mortality for people with epilepsy. Therefore, further collaboration of clinicians, technical experts, and researchers is needed for the future development of these devices. Finally, it is important to always take into consideration the expectations and requirements of people with epilepsy and their carers to facilitate the next generation of remote monitoring seizure detection devices.</p></div>","PeriodicalId":11914,"journal":{"name":"Epilepsy Research","volume":"201 ","pages":"Article 107334"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A systematic review of the literature reporting on remote monitoring epileptic seizure detection devices\",\"authors\":\"K. Komal , F. Cleary , J.S.G. Wells , L. Bennett\",\"doi\":\"10.1016/j.eplepsyres.2024.107334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Early detection and alert notification of an impending seizure for people with epilepsy have the potential to reduce Sudden Unexpected Death in Epilepsy (SUDEP). Current remote monitoring seizure detection devices for people with epilepsy are designed to support real-time monitoring of their vital health parameters linked to seizure alert notification. An understanding of the rapidly growing literature on remote seizure detection devices is essential to address the needs of people with epilepsy and their carers.</p></div><div><h3>Aim</h3><p>This review aims to examine the technical characteristics, device performance, user preference, and effectiveness of remote monitoring seizure detection devices.</p></div><div><h3>Methodology</h3><p>A systematic review referenced to PRISMA guidelines was used.</p></div><div><h3>Results</h3><p>A total of 1095 papers were identified from the initial search with 30 papers included in the review. Sixteen non-invasive remote monitoring seizure detection devices are currently available. Such seizure detection devices were found to have inbuilt intelligent sensor functionality to monitor electroencephalography, muscle movement, and accelerometer-based motion movement for detecting seizures remotely. Current challenges of these devices for people with epilepsy include skin irritation due to the type of patch electrode used and false alarm notifications, particularly during physical activity. The tight-fitted accelerometer-type devices are reported as uncomfortable from a wearability perspective for long-term monitoring. Also, continuous recording of physiological signals and triggering alert notifications significantly reduce the battery life of the devices. The literature highlights that 3.2 out of 5 people with epilepsy are not using seizure detection devices because of the cost and appearance of the device.</p></div><div><h3>Conclusion</h3><p>Seizure detection devices can potentially reduce morbidity and mortality for people with epilepsy. Therefore, further collaboration of clinicians, technical experts, and researchers is needed for the future development of these devices. Finally, it is important to always take into consideration the expectations and requirements of people with epilepsy and their carers to facilitate the next generation of remote monitoring seizure detection devices.</p></div>\",\"PeriodicalId\":11914,\"journal\":{\"name\":\"Epilepsy Research\",\"volume\":\"201 \",\"pages\":\"Article 107334\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epilepsy Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920121124000494\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920121124000494","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
A systematic review of the literature reporting on remote monitoring epileptic seizure detection devices
Background
Early detection and alert notification of an impending seizure for people with epilepsy have the potential to reduce Sudden Unexpected Death in Epilepsy (SUDEP). Current remote monitoring seizure detection devices for people with epilepsy are designed to support real-time monitoring of their vital health parameters linked to seizure alert notification. An understanding of the rapidly growing literature on remote seizure detection devices is essential to address the needs of people with epilepsy and their carers.
Aim
This review aims to examine the technical characteristics, device performance, user preference, and effectiveness of remote monitoring seizure detection devices.
Methodology
A systematic review referenced to PRISMA guidelines was used.
Results
A total of 1095 papers were identified from the initial search with 30 papers included in the review. Sixteen non-invasive remote monitoring seizure detection devices are currently available. Such seizure detection devices were found to have inbuilt intelligent sensor functionality to monitor electroencephalography, muscle movement, and accelerometer-based motion movement for detecting seizures remotely. Current challenges of these devices for people with epilepsy include skin irritation due to the type of patch electrode used and false alarm notifications, particularly during physical activity. The tight-fitted accelerometer-type devices are reported as uncomfortable from a wearability perspective for long-term monitoring. Also, continuous recording of physiological signals and triggering alert notifications significantly reduce the battery life of the devices. The literature highlights that 3.2 out of 5 people with epilepsy are not using seizure detection devices because of the cost and appearance of the device.
Conclusion
Seizure detection devices can potentially reduce morbidity and mortality for people with epilepsy. Therefore, further collaboration of clinicians, technical experts, and researchers is needed for the future development of these devices. Finally, it is important to always take into consideration the expectations and requirements of people with epilepsy and their carers to facilitate the next generation of remote monitoring seizure detection devices.
期刊介绍:
Epilepsy Research provides for publication of high quality articles in both basic and clinical epilepsy research, with a special emphasis on translational research that ultimately relates to epilepsy as a human condition. The journal is intended to provide a forum for reporting the best and most rigorous epilepsy research from all disciplines ranging from biophysics and molecular biology to epidemiological and psychosocial research. As such the journal will publish original papers relevant to epilepsy from any scientific discipline and also studies of a multidisciplinary nature. Clinical and experimental research papers adopting fresh conceptual approaches to the study of epilepsy and its treatment are encouraged. The overriding criteria for publication are novelty, significant clinical or experimental relevance, and interest to a multidisciplinary audience in the broad arena of epilepsy. Review articles focused on any topic of epilepsy research will also be considered, but only if they present an exceptionally clear synthesis of current knowledge and future directions of a research area, based on a critical assessment of the available data or on hypotheses that are likely to stimulate more critical thinking and further advances in an area of epilepsy research.