R. B. Gou, Y. B. Ge, M. Yu, C. Y. Zhang, Y. J. Shi, W. J. Dan, N. Wang, Z. Y. Si
{"title":"不同使用温度下尺寸对冷轧 ASS-304 板材拉伸性能的影响","authors":"R. B. Gou, Y. B. Ge, M. Yu, C. Y. Zhang, Y. J. Shi, W. J. Dan, N. Wang, Z. Y. Si","doi":"10.1007/s11223-024-00615-x","DOIUrl":null,"url":null,"abstract":"<p>To investigate the relationship between service temperature ranging from –40~250℃, and size effect on tensile properties of thin ASS-304 sheets with nine different thicknesses (40~500 μm), uniaxial tensile tests were performed on thin ASS-304 sheets of the same average grain size in the present study. Within the thickness range of 40 to 300 μm, corresponding to <i>η</i> = <i>t</i>/<i>d</i> values from 1.1 to 8.1. The ultimate tensile strength (<i>UTS</i>), yield strength (<i>YS</i>), and elongation (<i>EL</i>) of ASS-304 exhibits a dimensional effect of “the thinner, the stronger”. For example, as the <i>η</i> increases from 1.1 to 8.1, the <i>UTS</i> rapidly decreased from 1798.8 to 839.0 MPa at 20℃, from 1703.1 to 526.9 MPa at 150℃, and from 1661.2 to 478.9 MPa at 250℃, attenuation of 53.36, 69.06, and 71.17%, respectively. Meanwhile, the <i>YS</i> at 20℃ are separately 1768.9 to 418.7 MPa with 1695.2 to 343.3 MPa at 150℃ as well as 1645.7 to 330.1 MPa at 250°C, decrease the proportion of 76.33%, 79.75% and 79.94% respectively. Notably, the <i>UTS</i>, <i>YS</i>, and <i>EL</i> at 150 and 250℃ are lower than those at 20℃. The true stress value of ASS-304 was enhanced at –20 and –40℃, and the true strain increases first and then weakens as the thickness increases, the reason is the transformation- induced-plasticity (TRIP) effect of ASS-304 in stretching. The asymptotic function describes the relationship between strength and the values of <i>η</i>, while the Chapman function represents the relationship between elongation and the <i>η</i>. A linear variation exists between service temperature and tensile properties. And relevant empirical equations including <i>T</i>-<i>η</i>- and <i>T-η</i>-tensile properties were established, which can predict the <i>UTS</i>, <i>YS</i>, and <i>EL</i> of thin ASS-304 sheets under different service temperatures.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size Effect on Tensile Properties of Cold-Rolled ASS-304 Sheets at Various Service Temperatures\",\"authors\":\"R. B. Gou, Y. B. Ge, M. Yu, C. Y. Zhang, Y. J. Shi, W. J. Dan, N. Wang, Z. Y. Si\",\"doi\":\"10.1007/s11223-024-00615-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To investigate the relationship between service temperature ranging from –40~250℃, and size effect on tensile properties of thin ASS-304 sheets with nine different thicknesses (40~500 μm), uniaxial tensile tests were performed on thin ASS-304 sheets of the same average grain size in the present study. Within the thickness range of 40 to 300 μm, corresponding to <i>η</i> = <i>t</i>/<i>d</i> values from 1.1 to 8.1. The ultimate tensile strength (<i>UTS</i>), yield strength (<i>YS</i>), and elongation (<i>EL</i>) of ASS-304 exhibits a dimensional effect of “the thinner, the stronger”. For example, as the <i>η</i> increases from 1.1 to 8.1, the <i>UTS</i> rapidly decreased from 1798.8 to 839.0 MPa at 20℃, from 1703.1 to 526.9 MPa at 150℃, and from 1661.2 to 478.9 MPa at 250℃, attenuation of 53.36, 69.06, and 71.17%, respectively. Meanwhile, the <i>YS</i> at 20℃ are separately 1768.9 to 418.7 MPa with 1695.2 to 343.3 MPa at 150℃ as well as 1645.7 to 330.1 MPa at 250°C, decrease the proportion of 76.33%, 79.75% and 79.94% respectively. Notably, the <i>UTS</i>, <i>YS</i>, and <i>EL</i> at 150 and 250℃ are lower than those at 20℃. The true stress value of ASS-304 was enhanced at –20 and –40℃, and the true strain increases first and then weakens as the thickness increases, the reason is the transformation- induced-plasticity (TRIP) effect of ASS-304 in stretching. The asymptotic function describes the relationship between strength and the values of <i>η</i>, while the Chapman function represents the relationship between elongation and the <i>η</i>. A linear variation exists between service temperature and tensile properties. And relevant empirical equations including <i>T</i>-<i>η</i>- and <i>T-η</i>-tensile properties were established, which can predict the <i>UTS</i>, <i>YS</i>, and <i>EL</i> of thin ASS-304 sheets under different service temperatures.</p>\",\"PeriodicalId\":22007,\"journal\":{\"name\":\"Strength of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strength of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11223-024-00615-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-024-00615-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Size Effect on Tensile Properties of Cold-Rolled ASS-304 Sheets at Various Service Temperatures
To investigate the relationship between service temperature ranging from –40~250℃, and size effect on tensile properties of thin ASS-304 sheets with nine different thicknesses (40~500 μm), uniaxial tensile tests were performed on thin ASS-304 sheets of the same average grain size in the present study. Within the thickness range of 40 to 300 μm, corresponding to η = t/d values from 1.1 to 8.1. The ultimate tensile strength (UTS), yield strength (YS), and elongation (EL) of ASS-304 exhibits a dimensional effect of “the thinner, the stronger”. For example, as the η increases from 1.1 to 8.1, the UTS rapidly decreased from 1798.8 to 839.0 MPa at 20℃, from 1703.1 to 526.9 MPa at 150℃, and from 1661.2 to 478.9 MPa at 250℃, attenuation of 53.36, 69.06, and 71.17%, respectively. Meanwhile, the YS at 20℃ are separately 1768.9 to 418.7 MPa with 1695.2 to 343.3 MPa at 150℃ as well as 1645.7 to 330.1 MPa at 250°C, decrease the proportion of 76.33%, 79.75% and 79.94% respectively. Notably, the UTS, YS, and EL at 150 and 250℃ are lower than those at 20℃. The true stress value of ASS-304 was enhanced at –20 and –40℃, and the true strain increases first and then weakens as the thickness increases, the reason is the transformation- induced-plasticity (TRIP) effect of ASS-304 in stretching. The asymptotic function describes the relationship between strength and the values of η, while the Chapman function represents the relationship between elongation and the η. A linear variation exists between service temperature and tensile properties. And relevant empirical equations including T-η- and T-η-tensile properties were established, which can predict the UTS, YS, and EL of thin ASS-304 sheets under different service temperatures.
期刊介绍:
Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.