{"title":"通过凸投影计算凸上像的后退锥","authors":"Gabriela Kováčová, Firdevs Ulus","doi":"10.1007/s10898-023-01351-3","DOIUrl":null,"url":null,"abstract":"<p>It is possible to solve unbounded convex vector optimization problems (CVOPs) in two phases: (1) computing or approximating the recession cone of the upper image and (2) solving the equivalent bounded CVOP where the ordering cone is extended based on the first phase. In this paper, we consider unbounded CVOPs and propose an alternative solution methodology to compute or approximate the recession cone of the upper image. In particular, we relate the dual of the recession cone with the Lagrange dual of weighted sum scalarization problems whenever the dual problem can be written explicitly. Computing this set requires solving a convex (or polyhedral) projection problem. We show that this methodology can be applied to semidefinite, quadratic, and linear vector optimization problems and provide some numerical examples.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing the recession cone of a convex upper image via convex projection\",\"authors\":\"Gabriela Kováčová, Firdevs Ulus\",\"doi\":\"10.1007/s10898-023-01351-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is possible to solve unbounded convex vector optimization problems (CVOPs) in two phases: (1) computing or approximating the recession cone of the upper image and (2) solving the equivalent bounded CVOP where the ordering cone is extended based on the first phase. In this paper, we consider unbounded CVOPs and propose an alternative solution methodology to compute or approximate the recession cone of the upper image. In particular, we relate the dual of the recession cone with the Lagrange dual of weighted sum scalarization problems whenever the dual problem can be written explicitly. Computing this set requires solving a convex (or polyhedral) projection problem. We show that this methodology can be applied to semidefinite, quadratic, and linear vector optimization problems and provide some numerical examples.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-023-01351-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-023-01351-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Computing the recession cone of a convex upper image via convex projection
It is possible to solve unbounded convex vector optimization problems (CVOPs) in two phases: (1) computing or approximating the recession cone of the upper image and (2) solving the equivalent bounded CVOP where the ordering cone is extended based on the first phase. In this paper, we consider unbounded CVOPs and propose an alternative solution methodology to compute or approximate the recession cone of the upper image. In particular, we relate the dual of the recession cone with the Lagrange dual of weighted sum scalarization problems whenever the dual problem can be written explicitly. Computing this set requires solving a convex (or polyhedral) projection problem. We show that this methodology can be applied to semidefinite, quadratic, and linear vector optimization problems and provide some numerical examples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.