Marco Baioletti, Valentino Santucci, Marco Tomassini
{"title":"Basin hopping 的性能分析:与已建立的元优化全局优化相比","authors":"Marco Baioletti, Valentino Santucci, Marco Tomassini","doi":"10.1007/s10898-024-01373-5","DOIUrl":null,"url":null,"abstract":"<p>During the last decades many metaheuristics for global numerical optimization have been proposed. Among them, Basin Hopping is very simple and straightforward to implement, although rarely used outside its original Physical Chemistry community. In this work, our aim is to compare Basin Hopping, and two population variants of it, with readily available implementations of the well known metaheuristics Differential Evolution, Particle Swarm Optimization, and Covariance Matrix Adaptation Evolution Strategy. We perform numerical experiments using the <i>IOH profiler</i> environment with the BBOB test function set and two difficult real-world problems. The experiments were carried out in two different but complementary ways: by measuring the performance under a fixed budget of function evaluations and by considering a fixed target value. The general conclusion is that Basin Hopping and its newly introduced population variant are almost as good as Covariance Matrix Adaptation on the synthetic benchmark functions and better than it on the two hard cluster energy minimization problems. Thus, the proposed analyses show that Basin Hopping can be considered a good candidate for global numerical optimization problems along with the more established metaheuristics, especially if one wants to obtain quick and reliable results on an unknown problem.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A performance analysis of Basin hopping compared to established metaheuristics for global optimization\",\"authors\":\"Marco Baioletti, Valentino Santucci, Marco Tomassini\",\"doi\":\"10.1007/s10898-024-01373-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>During the last decades many metaheuristics for global numerical optimization have been proposed. Among them, Basin Hopping is very simple and straightforward to implement, although rarely used outside its original Physical Chemistry community. In this work, our aim is to compare Basin Hopping, and two population variants of it, with readily available implementations of the well known metaheuristics Differential Evolution, Particle Swarm Optimization, and Covariance Matrix Adaptation Evolution Strategy. We perform numerical experiments using the <i>IOH profiler</i> environment with the BBOB test function set and two difficult real-world problems. The experiments were carried out in two different but complementary ways: by measuring the performance under a fixed budget of function evaluations and by considering a fixed target value. The general conclusion is that Basin Hopping and its newly introduced population variant are almost as good as Covariance Matrix Adaptation on the synthetic benchmark functions and better than it on the two hard cluster energy minimization problems. Thus, the proposed analyses show that Basin Hopping can be considered a good candidate for global numerical optimization problems along with the more established metaheuristics, especially if one wants to obtain quick and reliable results on an unknown problem.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01373-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01373-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A performance analysis of Basin hopping compared to established metaheuristics for global optimization
During the last decades many metaheuristics for global numerical optimization have been proposed. Among them, Basin Hopping is very simple and straightforward to implement, although rarely used outside its original Physical Chemistry community. In this work, our aim is to compare Basin Hopping, and two population variants of it, with readily available implementations of the well known metaheuristics Differential Evolution, Particle Swarm Optimization, and Covariance Matrix Adaptation Evolution Strategy. We perform numerical experiments using the IOH profiler environment with the BBOB test function set and two difficult real-world problems. The experiments were carried out in two different but complementary ways: by measuring the performance under a fixed budget of function evaluations and by considering a fixed target value. The general conclusion is that Basin Hopping and its newly introduced population variant are almost as good as Covariance Matrix Adaptation on the synthetic benchmark functions and better than it on the two hard cluster energy minimization problems. Thus, the proposed analyses show that Basin Hopping can be considered a good candidate for global numerical optimization problems along with the more established metaheuristics, especially if one wants to obtain quick and reliable results on an unknown problem.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.