{"title":"举例说明模态公式的特征","authors":"Balder ten Cate, Raoul Koudijs","doi":"10.1145/3649461","DOIUrl":null,"url":null,"abstract":"<p>We study the existence of finite characterisations for modal formulas. A finite characterisation of a modal formula φ is a finite collection of positive and negative examples that distinguishes φ from every other, non-equivalent modal formula, where an example is a finite pointed Kripke structure. This definition can be restricted to specific frame classes and to fragments of the modal language: a modal fragment \\(\\mathcal {L} \\) admits finite characterisations with respect to a frame class \\(\\mathcal {F} \\) if every formula \\(\\varphi \\in \\mathcal {L} \\) has a finite characterisation with respect to \\(\\mathcal {L} \\) consisting of examples that are based on frames in \\(\\mathcal {F} \\). Finite characterisations are useful for illustration, interactive specification, and debugging of formal specifications, and their existence is a precondition for exact learnability with membership queries. We show that the full modal language admits finite characterisations with respect to a frame class \\(\\mathcal {F} \\) only when the modal logic of \\(\\mathcal {F} \\) is locally tabular. We then study which modal fragments, freely generated by some set of connectives, admit finite characterisations. Our main result is that the positive modal language without the truth-constants ⊤ and ⊥ admits finite characterisations w.r.t. the class of all frames. This result is essentially optimal: finite characterizability fails when the language is extended with the truth constant ⊤ or ⊥ or with all but very limited forms of negation.</p>","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":"161 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterising Modal Formulas with Examples\",\"authors\":\"Balder ten Cate, Raoul Koudijs\",\"doi\":\"10.1145/3649461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the existence of finite characterisations for modal formulas. A finite characterisation of a modal formula φ is a finite collection of positive and negative examples that distinguishes φ from every other, non-equivalent modal formula, where an example is a finite pointed Kripke structure. This definition can be restricted to specific frame classes and to fragments of the modal language: a modal fragment \\\\(\\\\mathcal {L} \\\\) admits finite characterisations with respect to a frame class \\\\(\\\\mathcal {F} \\\\) if every formula \\\\(\\\\varphi \\\\in \\\\mathcal {L} \\\\) has a finite characterisation with respect to \\\\(\\\\mathcal {L} \\\\) consisting of examples that are based on frames in \\\\(\\\\mathcal {F} \\\\). Finite characterisations are useful for illustration, interactive specification, and debugging of formal specifications, and their existence is a precondition for exact learnability with membership queries. We show that the full modal language admits finite characterisations with respect to a frame class \\\\(\\\\mathcal {F} \\\\) only when the modal logic of \\\\(\\\\mathcal {F} \\\\) is locally tabular. We then study which modal fragments, freely generated by some set of connectives, admit finite characterisations. Our main result is that the positive modal language without the truth-constants ⊤ and ⊥ admits finite characterisations w.r.t. the class of all frames. This result is essentially optimal: finite characterizability fails when the language is extended with the truth constant ⊤ or ⊥ or with all but very limited forms of negation.</p>\",\"PeriodicalId\":50916,\"journal\":{\"name\":\"ACM Transactions on Computational Logic\",\"volume\":\"161 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computational Logic\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3649461\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3649461","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We study the existence of finite characterisations for modal formulas. A finite characterisation of a modal formula φ is a finite collection of positive and negative examples that distinguishes φ from every other, non-equivalent modal formula, where an example is a finite pointed Kripke structure. This definition can be restricted to specific frame classes and to fragments of the modal language: a modal fragment \(\mathcal {L} \) admits finite characterisations with respect to a frame class \(\mathcal {F} \) if every formula \(\varphi \in \mathcal {L} \) has a finite characterisation with respect to \(\mathcal {L} \) consisting of examples that are based on frames in \(\mathcal {F} \). Finite characterisations are useful for illustration, interactive specification, and debugging of formal specifications, and their existence is a precondition for exact learnability with membership queries. We show that the full modal language admits finite characterisations with respect to a frame class \(\mathcal {F} \) only when the modal logic of \(\mathcal {F} \) is locally tabular. We then study which modal fragments, freely generated by some set of connectives, admit finite characterisations. Our main result is that the positive modal language without the truth-constants ⊤ and ⊥ admits finite characterisations w.r.t. the class of all frames. This result is essentially optimal: finite characterizability fails when the language is extended with the truth constant ⊤ or ⊥ or with all but very limited forms of negation.
期刊介绍:
TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI).
Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages.
The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field.
Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.