用于砂浆筒加固的插入式圆筒结构

IF 0.7 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Strength of Materials Pub Date : 2024-02-28 DOI:10.1007/s11223-024-00606-y
{"title":"用于砂浆筒加固的插入式圆筒结构","authors":"","doi":"10.1007/s11223-024-00606-y","DOIUrl":null,"url":null,"abstract":"<p>In the course of combat operations, accidental projectile detonation in the mortar barrel channel can occur through the faulty fuze actuation or detonation of two projectiles for the violation of safety measures, viz double charging of the mortar. Barrel rupture occasions pose new challenges for the developers of this weapon to improve the safe operation of mortars. The literature analysis revealed that among the current studies on the stress-strain state of mortar barrels during the projectile explosion in their channel, the results of determining the stresses in the barrel structures capable of withstanding the explosive gas pressure in the channel were absent. Existing mathematical models for evaluating the stress-strain state of a mortar barrel on the projectile detonation in its channel need to be improved. The potentials of developing new approaches to mortar barrel strengthening for combat operations are substantiated. For this, the theory of insert liquid-filled cylinder structures (pipes) is proposed. The internal pressure for those structures is calculated. The mortar barrels can be modified by applying the optimum combination of new materials and modern design circuitry.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":"234 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insert Cylinder Structures for Mortar Barrel Strengthening\",\"authors\":\"\",\"doi\":\"10.1007/s11223-024-00606-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the course of combat operations, accidental projectile detonation in the mortar barrel channel can occur through the faulty fuze actuation or detonation of two projectiles for the violation of safety measures, viz double charging of the mortar. Barrel rupture occasions pose new challenges for the developers of this weapon to improve the safe operation of mortars. The literature analysis revealed that among the current studies on the stress-strain state of mortar barrels during the projectile explosion in their channel, the results of determining the stresses in the barrel structures capable of withstanding the explosive gas pressure in the channel were absent. Existing mathematical models for evaluating the stress-strain state of a mortar barrel on the projectile detonation in its channel need to be improved. The potentials of developing new approaches to mortar barrel strengthening for combat operations are substantiated. For this, the theory of insert liquid-filled cylinder structures (pipes) is proposed. The internal pressure for those structures is calculated. The mortar barrels can be modified by applying the optimum combination of new materials and modern design circuitry.</p>\",\"PeriodicalId\":22007,\"journal\":{\"name\":\"Strength of Materials\",\"volume\":\"234 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strength of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11223-024-00606-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-024-00606-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

在作战行动中,迫击炮炮管通道内可能会因引信触发故障或违反安全措施(即迫击炮双重装药)引爆两枚弹丸而发生意外弹丸爆炸。迫击炮炮管破裂的情况对该武器的开发人员提出了新的挑战,以改善迫击炮的安全操作。文献分析表明,在目前对迫击炮炮筒在其通道中的弹丸爆炸时的应力-应变状态进行的研究中,缺乏对能够承受通道中爆炸气体压力的炮筒结构的应力进行测定的结果。现有的评估迫击炮炮筒在其通道中被射弹引爆时的应力应变状态的数学模型需要改进。为作战行动开发迫击炮炮筒加固新方法的潜力得到了证实。为此,提出了插入式充液圆柱体结构(管道)理论。对这些结构的内部压力进行了计算。通过应用新材料和现代设计电路的最佳组合,可以改进迫击炮炮筒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insert Cylinder Structures for Mortar Barrel Strengthening

In the course of combat operations, accidental projectile detonation in the mortar barrel channel can occur through the faulty fuze actuation or detonation of two projectiles for the violation of safety measures, viz double charging of the mortar. Barrel rupture occasions pose new challenges for the developers of this weapon to improve the safe operation of mortars. The literature analysis revealed that among the current studies on the stress-strain state of mortar barrels during the projectile explosion in their channel, the results of determining the stresses in the barrel structures capable of withstanding the explosive gas pressure in the channel were absent. Existing mathematical models for evaluating the stress-strain state of a mortar barrel on the projectile detonation in its channel need to be improved. The potentials of developing new approaches to mortar barrel strengthening for combat operations are substantiated. For this, the theory of insert liquid-filled cylinder structures (pipes) is proposed. The internal pressure for those structures is calculated. The mortar barrels can be modified by applying the optimum combination of new materials and modern design circuitry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Strength of Materials
Strength of Materials MATERIALS SCIENCE, CHARACTERIZATION & TESTING-
CiteScore
1.20
自引率
14.30%
发文量
89
审稿时长
6-12 weeks
期刊介绍: Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.
期刊最新文献
Simulation Analysis of Mechanical Properties of DC Transmission Lines Under Mountain Fire Condition Eulerian Formulation of the Constitutive Relation for an Electro-Magneto-Elastic Material Class Impact Damage Prediction of Carbon Fiber Foam Sandwich Structure Based on the Hashin Failure Criterion Simulation of Low-Temperature Localized Serrated Deformation of Structural Materials in Liquid Helium Under Different Loading Modes and Potential Energy Accumulation Effect of Structural Anisotropy on a Fracture Mode of Ferromagnetic Steels Under Cyclic Loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1