{"title":"禁止诱导子图与łoś-tarski定理","authors":"YIJIA CHEN, JÖRG FLUM","doi":"10.1017/jsl.2023.99","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {C}$</span></span></img></span></span> be a class of finite and infinite graphs that is closed under induced subgraphs. The well-known Łoś–Tarski Theorem from classical model theory implies that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {C}$</span></span></img></span></span> is definable in first-order logic by a sentence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\varphi $</span></span></img></span></span> if and only if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {C}$</span></span></img></span></span> has a finite set of forbidden induced finite subgraphs. This result provides a powerful tool to show nontrivial characterizations of graphs of small vertex cover, of bounded tree-depth, of bounded shrub-depth, etc. in terms of forbidden induced finite subgraphs. Furthermore, by the Completeness Theorem, we can compute from <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\varphi $</span></span></img></span></span> the corresponding forbidden induced subgraphs. This machinery fails on finite graphs as shown by our results: </p><ul><li><p><span>–</span> There is a class <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {C}$</span></span></img></span></span> of finite graphs that is definable in first-order logic and closed under induced subgraphs but has no finite set of forbidden induced subgraphs.</p></li><li><p><span>–</span> Even if we only consider classes <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {C}$</span></span></img></span></span> of finite graphs that can be characterized by a finite set of forbidden induced subgraphs, such a characterization cannot be computed from a first-order sentence <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\varphi $</span></span></img></span></span> that defines <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathscr {C}$</span></span></img></span></span> and the size of the characterization cannot be bounded by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline10.png\"/><span data-mathjax-type=\"texmath\"><span>$f(|\\varphi |)$</span></span></span></span> for any computable function <span>f</span>.</p></li></ul><p></p><p>Besides their importance in graph theory, the above results also significantly strengthen similar known theorems for arbitrary structures.</p>","PeriodicalId":501300,"journal":{"name":"The Journal of Symbolic Logic","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FORBIDDEN INDUCED SUBGRAPHS AND THE ŁOŚ–TARSKI THEOREM\",\"authors\":\"YIJIA CHEN, JÖRG FLUM\",\"doi\":\"10.1017/jsl.2023.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathscr {C}$</span></span></img></span></span> be a class of finite and infinite graphs that is closed under induced subgraphs. The well-known Łoś–Tarski Theorem from classical model theory implies that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathscr {C}$</span></span></img></span></span> is definable in first-order logic by a sentence <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\varphi $</span></span></img></span></span> if and only if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathscr {C}$</span></span></img></span></span> has a finite set of forbidden induced finite subgraphs. This result provides a powerful tool to show nontrivial characterizations of graphs of small vertex cover, of bounded tree-depth, of bounded shrub-depth, etc. in terms of forbidden induced finite subgraphs. Furthermore, by the Completeness Theorem, we can compute from <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\varphi $</span></span></img></span></span> the corresponding forbidden induced subgraphs. This machinery fails on finite graphs as shown by our results: </p><ul><li><p><span>–</span> There is a class <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathscr {C}$</span></span></img></span></span> of finite graphs that is definable in first-order logic and closed under induced subgraphs but has no finite set of forbidden induced subgraphs.</p></li><li><p><span>–</span> Even if we only consider classes <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathscr {C}$</span></span></img></span></span> of finite graphs that can be characterized by a finite set of forbidden induced subgraphs, such a characterization cannot be computed from a first-order sentence <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\varphi $</span></span></img></span></span> that defines <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathscr {C}$</span></span></img></span></span> and the size of the characterization cannot be bounded by <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240226160248729-0542:S0022481223000993:S0022481223000993_inline10.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$f(|\\\\varphi |)$</span></span></span></span> for any computable function <span>f</span>.</p></li></ul><p></p><p>Besides their importance in graph theory, the above results also significantly strengthen similar known theorems for arbitrary structures.</p>\",\"PeriodicalId\":501300,\"journal\":{\"name\":\"The Journal of Symbolic Logic\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/jsl.2023.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jsl.2023.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FORBIDDEN INDUCED SUBGRAPHS AND THE ŁOŚ–TARSKI THEOREM
Let $\mathscr {C}$ be a class of finite and infinite graphs that is closed under induced subgraphs. The well-known Łoś–Tarski Theorem from classical model theory implies that $\mathscr {C}$ is definable in first-order logic by a sentence $\varphi $ if and only if $\mathscr {C}$ has a finite set of forbidden induced finite subgraphs. This result provides a powerful tool to show nontrivial characterizations of graphs of small vertex cover, of bounded tree-depth, of bounded shrub-depth, etc. in terms of forbidden induced finite subgraphs. Furthermore, by the Completeness Theorem, we can compute from $\varphi $ the corresponding forbidden induced subgraphs. This machinery fails on finite graphs as shown by our results:
– There is a class $\mathscr {C}$ of finite graphs that is definable in first-order logic and closed under induced subgraphs but has no finite set of forbidden induced subgraphs.
– Even if we only consider classes $\mathscr {C}$ of finite graphs that can be characterized by a finite set of forbidden induced subgraphs, such a characterization cannot be computed from a first-order sentence $\varphi $ that defines $\mathscr {C}$ and the size of the characterization cannot be bounded by $f(|\varphi |)$ for any computable function f.
Besides their importance in graph theory, the above results also significantly strengthen similar known theorems for arbitrary structures.