Jiyuan Wang, Yan Xiao, Dong Ye, Zijun Wang, Zhaowei Sun
{"title":"适应卫星星载计算的飞越观测任务优化方法研究","authors":"Jiyuan Wang, Yan Xiao, Dong Ye, Zijun Wang, Zhaowei Sun","doi":"10.1177/09544100241235801","DOIUrl":null,"url":null,"abstract":"In this paper, the optimization problem of orbital transfer strategy for orbital flyby observation missions is studied. A hybrid optimization method is proposed, which is improved to make it more suitable for satellite on-board computing. This new algorithm is designed to solve the initial value sensitivity problem of the sequential quadratic programming algorithm (SQP). It is consisted of the depth-first search algorithm (DFS) and the SQP algorithm and thus has the characteristics of fast convergence, high reliability, and good robustness. With this method, the DFS with a large step size is calculated first, and then the optimal value in the calculation result is used as the initial value of the SQP algorithm for further optimization. This method can obtain the approximate optimal solution available in engineering. The numerical simulation of an orbital transfer optimization problem is set to verify the effectiveness of the new hybrid algorithm. The simulation results compared with the genetic algorithm (GA) show that the proposed hybrid algorithm can effectively reduce the on-board resource occupation when getting similar results and thus can meet the needs of satellite on-board computing.","PeriodicalId":54566,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","volume":"39 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on optimization method for flyby observation mission adapted to satellite on-board computation\",\"authors\":\"Jiyuan Wang, Yan Xiao, Dong Ye, Zijun Wang, Zhaowei Sun\",\"doi\":\"10.1177/09544100241235801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the optimization problem of orbital transfer strategy for orbital flyby observation missions is studied. A hybrid optimization method is proposed, which is improved to make it more suitable for satellite on-board computing. This new algorithm is designed to solve the initial value sensitivity problem of the sequential quadratic programming algorithm (SQP). It is consisted of the depth-first search algorithm (DFS) and the SQP algorithm and thus has the characteristics of fast convergence, high reliability, and good robustness. With this method, the DFS with a large step size is calculated first, and then the optimal value in the calculation result is used as the initial value of the SQP algorithm for further optimization. This method can obtain the approximate optimal solution available in engineering. The numerical simulation of an orbital transfer optimization problem is set to verify the effectiveness of the new hybrid algorithm. The simulation results compared with the genetic algorithm (GA) show that the proposed hybrid algorithm can effectively reduce the on-board resource occupation when getting similar results and thus can meet the needs of satellite on-board computing.\",\"PeriodicalId\":54566,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544100241235801\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544100241235801","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Research on optimization method for flyby observation mission adapted to satellite on-board computation
In this paper, the optimization problem of orbital transfer strategy for orbital flyby observation missions is studied. A hybrid optimization method is proposed, which is improved to make it more suitable for satellite on-board computing. This new algorithm is designed to solve the initial value sensitivity problem of the sequential quadratic programming algorithm (SQP). It is consisted of the depth-first search algorithm (DFS) and the SQP algorithm and thus has the characteristics of fast convergence, high reliability, and good robustness. With this method, the DFS with a large step size is calculated first, and then the optimal value in the calculation result is used as the initial value of the SQP algorithm for further optimization. This method can obtain the approximate optimal solution available in engineering. The numerical simulation of an orbital transfer optimization problem is set to verify the effectiveness of the new hybrid algorithm. The simulation results compared with the genetic algorithm (GA) show that the proposed hybrid algorithm can effectively reduce the on-board resource occupation when getting similar results and thus can meet the needs of satellite on-board computing.
期刊介绍:
The Journal of Aerospace Engineering is dedicated to the publication of high quality research in all branches of applied sciences and technology dealing with aircraft and spacecraft, and their support systems. "Our authorship is truly international and all efforts are made to ensure that each paper is presented in the best possible way and reaches a wide audience.
"The Editorial Board is composed of recognized experts representing the technical communities of fifteen countries. The Board Members work in close cooperation with the editors, reviewers, and authors to achieve a consistent standard of well written and presented papers."Professor Rodrigo Martinez-Val, Universidad Politécnica de Madrid, Spain
This journal is a member of the Committee on Publication Ethics (COPE).