{"title":"基于机器学习的联合循环发动机超音速进气导向宽速范围背压未启动预测和预警方法","authors":"Ke Min, Tanbao Hong, Zejun Cai, Lianchen Yu, Chengxiang Zhu, Jianping Zeng","doi":"10.1155/2024/2284914","DOIUrl":null,"url":null,"abstract":"Inlet unstart prediction and warning are strictly crucial to the operation of hypersonic engines, especially for combined cycle engines where implementation across a wide speed range poses significant challenges. This paper proposes a realization method that involves constructing the conditions of critical backpressure ratios for the inlet unstart and unstart warning states within a wide speed range and establishing the backpressure prediction models for each engine mode. The detection of the unstart and unstart warning states is achieved by predicting the backpressure ratio at the exit of the isolator and comparing it to the critical backpressure ratios. To achieve this, numerical simulations for a three-dimensional inward-turning multiducted hypersonic combined inlet at various Mach numbers and backpressure ratios are carried out to obtain the dataset of surface pressure. A 10-fold cross-validation support vector machine (10-CV SVM) is used to solve the unstart boundary of surface pressure, and an unstart margin is set to determine the unstart warning boundary. A back propagation (BP) neural network is constructed to estimate the critical backpressure ratios at each working point within a wide speed range. The data information of surface pressure on the boundaries is used as the input for the predictions. The overall average regression correlation coefficient approaches 0.99 on the test dataset at each working point. The backpressure prediction models are established by the one-dimensional convolutional neural network (1D-CNN). Only 2 to 4 measurement points of surface pressure are considered for cross-validation evaluation, and the mean absolute percentage error is between 4% and 8% with the average prediction time not exceeding 2 ms. Finally, the proposed method and prediction models are validated by wind tunnel experimental data.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"2 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Backpressure Unstart Prediction and Warning Method for Combined Cycle Engine Hypersonic Inlet-Oriented Wide Speed Range\",\"authors\":\"Ke Min, Tanbao Hong, Zejun Cai, Lianchen Yu, Chengxiang Zhu, Jianping Zeng\",\"doi\":\"10.1155/2024/2284914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inlet unstart prediction and warning are strictly crucial to the operation of hypersonic engines, especially for combined cycle engines where implementation across a wide speed range poses significant challenges. This paper proposes a realization method that involves constructing the conditions of critical backpressure ratios for the inlet unstart and unstart warning states within a wide speed range and establishing the backpressure prediction models for each engine mode. The detection of the unstart and unstart warning states is achieved by predicting the backpressure ratio at the exit of the isolator and comparing it to the critical backpressure ratios. To achieve this, numerical simulations for a three-dimensional inward-turning multiducted hypersonic combined inlet at various Mach numbers and backpressure ratios are carried out to obtain the dataset of surface pressure. A 10-fold cross-validation support vector machine (10-CV SVM) is used to solve the unstart boundary of surface pressure, and an unstart margin is set to determine the unstart warning boundary. A back propagation (BP) neural network is constructed to estimate the critical backpressure ratios at each working point within a wide speed range. The data information of surface pressure on the boundaries is used as the input for the predictions. The overall average regression correlation coefficient approaches 0.99 on the test dataset at each working point. The backpressure prediction models are established by the one-dimensional convolutional neural network (1D-CNN). Only 2 to 4 measurement points of surface pressure are considered for cross-validation evaluation, and the mean absolute percentage error is between 4% and 8% with the average prediction time not exceeding 2 ms. Finally, the proposed method and prediction models are validated by wind tunnel experimental data.\",\"PeriodicalId\":13748,\"journal\":{\"name\":\"International Journal of Aerospace Engineering\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aerospace Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2284914\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/2284914","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Machine Learning-Based Backpressure Unstart Prediction and Warning Method for Combined Cycle Engine Hypersonic Inlet-Oriented Wide Speed Range
Inlet unstart prediction and warning are strictly crucial to the operation of hypersonic engines, especially for combined cycle engines where implementation across a wide speed range poses significant challenges. This paper proposes a realization method that involves constructing the conditions of critical backpressure ratios for the inlet unstart and unstart warning states within a wide speed range and establishing the backpressure prediction models for each engine mode. The detection of the unstart and unstart warning states is achieved by predicting the backpressure ratio at the exit of the isolator and comparing it to the critical backpressure ratios. To achieve this, numerical simulations for a three-dimensional inward-turning multiducted hypersonic combined inlet at various Mach numbers and backpressure ratios are carried out to obtain the dataset of surface pressure. A 10-fold cross-validation support vector machine (10-CV SVM) is used to solve the unstart boundary of surface pressure, and an unstart margin is set to determine the unstart warning boundary. A back propagation (BP) neural network is constructed to estimate the critical backpressure ratios at each working point within a wide speed range. The data information of surface pressure on the boundaries is used as the input for the predictions. The overall average regression correlation coefficient approaches 0.99 on the test dataset at each working point. The backpressure prediction models are established by the one-dimensional convolutional neural network (1D-CNN). Only 2 to 4 measurement points of surface pressure are considered for cross-validation evaluation, and the mean absolute percentage error is between 4% and 8% with the average prediction time not exceeding 2 ms. Finally, the proposed method and prediction models are validated by wind tunnel experimental data.
期刊介绍:
International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles.
Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to:
-Mechanics of materials and structures-
Aerodynamics and fluid mechanics-
Dynamics and control-
Aeroacoustics-
Aeroelasticity-
Propulsion and combustion-
Avionics and systems-
Flight simulation and mechanics-
Unmanned air vehicles (UAVs).
Review articles on any of the above topics are also welcome.