利用模型驱动工程实现软件语言翻译自动化

IF 2 2区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Automated Software Engineering Pub Date : 2024-02-28 DOI:10.1007/s10515-024-00419-y
Kevin Lano, Hanan Siala
{"title":"利用模型驱动工程实现软件语言翻译自动化","authors":"Kevin Lano,&nbsp;Hanan Siala","doi":"10.1007/s10515-024-00419-y","DOIUrl":null,"url":null,"abstract":"<div><p>The porting or translation of software applications from one programming language to another is a common requirement of organisations that utilise software, and the increasing number and diversity of programming languages makes this capability as relevant today as in previous decades. Several approaches have been used to address this challenge, including machine learning and the manual definition of direct language-to-language translation rules, however the accuracy of these approaches remains unsatisfactory. In this paper we describe a new approach to program translation using model-driven engineering techniques: reverse-engineering source programs into specifications in the UML and OCL formalisms, and then forward-engineering the specifications to the required target language. This approach can provide assurance of semantic preservation, and additionally has the advantage of extracting precise specifications of software from code. We provide an evaluation based on a comprehensive dataset of examples, including industrial cases, and compare our results to those of other approaches and tools. Our specific contributions are: (1) Reverse-engineering source programs to detailed <i>semantic models</i> of software behaviour, to enable semantically-correct translations and reduce re-testing costs; (2) Program abstraction processes defined by precise and explicit rules, which can be edited and configured by users; (3) A set of reusable OCL library components appropriate for representing program semantics, and which can also be used for OCL specification of new applications; (4) A systematic procedure for building program abstractors based on language grammars and semantics.</p></div>","PeriodicalId":55414,"journal":{"name":"Automated Software Engineering","volume":"31 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10515-024-00419-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Using model-driven engineering to automate software language translation\",\"authors\":\"Kevin Lano,&nbsp;Hanan Siala\",\"doi\":\"10.1007/s10515-024-00419-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The porting or translation of software applications from one programming language to another is a common requirement of organisations that utilise software, and the increasing number and diversity of programming languages makes this capability as relevant today as in previous decades. Several approaches have been used to address this challenge, including machine learning and the manual definition of direct language-to-language translation rules, however the accuracy of these approaches remains unsatisfactory. In this paper we describe a new approach to program translation using model-driven engineering techniques: reverse-engineering source programs into specifications in the UML and OCL formalisms, and then forward-engineering the specifications to the required target language. This approach can provide assurance of semantic preservation, and additionally has the advantage of extracting precise specifications of software from code. We provide an evaluation based on a comprehensive dataset of examples, including industrial cases, and compare our results to those of other approaches and tools. Our specific contributions are: (1) Reverse-engineering source programs to detailed <i>semantic models</i> of software behaviour, to enable semantically-correct translations and reduce re-testing costs; (2) Program abstraction processes defined by precise and explicit rules, which can be edited and configured by users; (3) A set of reusable OCL library components appropriate for representing program semantics, and which can also be used for OCL specification of new applications; (4) A systematic procedure for building program abstractors based on language grammars and semantics.</p></div>\",\"PeriodicalId\":55414,\"journal\":{\"name\":\"Automated Software Engineering\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10515-024-00419-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automated Software Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10515-024-00419-y\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automated Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10515-024-00419-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

将软件应用程序从一种编程语言移植或翻译成另一种编程语言,是使用软件的机构的共同要求,而编程语言的数量和多样性不断增加,使得这种能力在今天与过去几十年一样重要。为应对这一挑战,人们采用了多种方法,包括机器学习和手动定义语言间的直接翻译规则,但这些方法的准确性仍不能令人满意。在本文中,我们介绍了一种使用模型驱动工程技术进行程序翻译的新方法:将源程序逆向工程转换为 UML 和 OCL 形式的规范,然后将规范正向工程转换为所需的目标语言。这种方法可以确保语义的保留,而且还具有从代码中提取精确软件规范的优势。我们基于包括工业案例在内的综合示例数据集进行了评估,并将我们的结果与其他方法和工具的结果进行了比较。我们的具体贡献如下(1) 将源程序逆向工程化为详细的软件行为语义模型,从而实现语义正确的翻译并降低重新测试的成本;(2) 通过精确而明确的规则定义程序抽象过程,用户可对其进行编辑和配置;(3) 一套可重复使用的 OCL 库组件,适用于表示程序语义,也可用于新应用程序的 OCL 规范;(4) 基于语言语法和语义构建程序抽象器的系统程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using model-driven engineering to automate software language translation

The porting or translation of software applications from one programming language to another is a common requirement of organisations that utilise software, and the increasing number and diversity of programming languages makes this capability as relevant today as in previous decades. Several approaches have been used to address this challenge, including machine learning and the manual definition of direct language-to-language translation rules, however the accuracy of these approaches remains unsatisfactory. In this paper we describe a new approach to program translation using model-driven engineering techniques: reverse-engineering source programs into specifications in the UML and OCL formalisms, and then forward-engineering the specifications to the required target language. This approach can provide assurance of semantic preservation, and additionally has the advantage of extracting precise specifications of software from code. We provide an evaluation based on a comprehensive dataset of examples, including industrial cases, and compare our results to those of other approaches and tools. Our specific contributions are: (1) Reverse-engineering source programs to detailed semantic models of software behaviour, to enable semantically-correct translations and reduce re-testing costs; (2) Program abstraction processes defined by precise and explicit rules, which can be edited and configured by users; (3) A set of reusable OCL library components appropriate for representing program semantics, and which can also be used for OCL specification of new applications; (4) A systematic procedure for building program abstractors based on language grammars and semantics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automated Software Engineering
Automated Software Engineering 工程技术-计算机:软件工程
CiteScore
4.80
自引率
11.80%
发文量
51
审稿时长
>12 weeks
期刊介绍: This journal details research, tutorial papers, survey and accounts of significant industrial experience in the foundations, techniques, tools and applications of automated software engineering technology. This includes the study of techniques for constructing, understanding, adapting, and modeling software artifacts and processes. Coverage in Automated Software Engineering examines both automatic systems and collaborative systems as well as computational models of human software engineering activities. In addition, it presents knowledge representations and artificial intelligence techniques applicable to automated software engineering, and formal techniques that support or provide theoretical foundations. The journal also includes reviews of books, software, conferences and workshops.
期刊最新文献
MP: motion program synthesis with machine learning interpretability and knowledge graph analogy LLM-enhanced evolutionary test generation for untyped languages Context-aware code summarization with multi-relational graph neural network Enhancing multi-objective test case selection through the mutation operator BadCodePrompt: backdoor attacks against prompt engineering of large language models for code generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1