{"title":"zeta函数零点序数的某些子序列的均匀分布模一","authors":"FATMA ÇİÇEK, STEVEN M. GONEK","doi":"10.1017/s0305004124000045","DOIUrl":null,"url":null,"abstract":"<p>On the assumption of the Riemann hypothesis and a spacing hypothesis for the nontrivial zeros <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$1/2+i\\gamma$</span></span></img></span></span> of the Riemann zeta function, we show that the sequence <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_eqnU1.png\"><span data-mathjax-type=\"texmath\"><span>\\begin{equation*}\\Gamma_{[a, b]} =\\Bigg\\{ \\gamma : \\gamma>0 \\quad \\mbox{and} \\quad \\frac{ \\log\\big(| \\zeta^{(m_{\\gamma })} (\\frac12+ i{\\gamma }) | / (\\!\\log{{\\gamma }} )^{m_{\\gamma }}\\big)}{\\sqrt{\\frac12\\log\\log {\\gamma }}} \\in [a, b] \\Bigg\\},\\end{equation*}</span></span></img></span>where the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\gamma }$</span></span></img></span></span> are arranged in increasing order, is uniformly distributed modulo one. Here <span>a</span> and <span>b</span> are real numbers with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$a<b$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$m_\\gamma$</span></span></img></span></span> denotes the multiplicity of the zero <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$1/2+i{\\gamma }$</span></span></img></span></span>. The same result holds when the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline6.png\"><span data-mathjax-type=\"texmath\"><span>${\\gamma }$</span></span></img></span></span>’s are restricted to be the ordinates of simple zeros. With an extra hypothesis, we are also able to show an equidistribution result for the scaled numbers <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\gamma (\\!\\log T)/2\\pi$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\gamma }\\in \\Gamma_{[a, b]}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline9.png\"/><span data-mathjax-type=\"texmath\"><span>$0<{\\gamma }\\leq T$</span></span></span></span>.</p>","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"252 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The uniform distribution modulo one of certain subsequences of ordinates of zeros of the zeta function\",\"authors\":\"FATMA ÇİÇEK, STEVEN M. GONEK\",\"doi\":\"10.1017/s0305004124000045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On the assumption of the Riemann hypothesis and a spacing hypothesis for the nontrivial zeros <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1/2+i\\\\gamma$</span></span></img></span></span> of the Riemann zeta function, we show that the sequence <span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_eqnU1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>\\\\begin{equation*}\\\\Gamma_{[a, b]} =\\\\Bigg\\\\{ \\\\gamma : \\\\gamma>0 \\\\quad \\\\mbox{and} \\\\quad \\\\frac{ \\\\log\\\\big(| \\\\zeta^{(m_{\\\\gamma })} (\\\\frac12+ i{\\\\gamma }) | / (\\\\!\\\\log{{\\\\gamma }} )^{m_{\\\\gamma }}\\\\big)}{\\\\sqrt{\\\\frac12\\\\log\\\\log {\\\\gamma }}} \\\\in [a, b] \\\\Bigg\\\\},\\\\end{equation*}</span></span></img></span>where the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\gamma }$</span></span></img></span></span> are arranged in increasing order, is uniformly distributed modulo one. Here <span>a</span> and <span>b</span> are real numbers with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$a<b$</span></span></img></span></span>, and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$m_\\\\gamma$</span></span></img></span></span> denotes the multiplicity of the zero <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1/2+i{\\\\gamma }$</span></span></img></span></span>. The same result holds when the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\gamma }$</span></span></img></span></span>’s are restricted to be the ordinates of simple zeros. With an extra hypothesis, we are also able to show an equidistribution result for the scaled numbers <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\gamma (\\\\!\\\\log T)/2\\\\pi$</span></span></img></span></span> with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\gamma }\\\\in \\\\Gamma_{[a, b]}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240229125249422-0748:S0305004124000045:S0305004124000045_inline9.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$0<{\\\\gamma }\\\\leq T$</span></span></span></span>.</p>\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"252 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s0305004124000045\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0305004124000045","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The uniform distribution modulo one of certain subsequences of ordinates of zeros of the zeta function
On the assumption of the Riemann hypothesis and a spacing hypothesis for the nontrivial zeros $1/2+i\gamma$ of the Riemann zeta function, we show that the sequence \begin{equation*}\Gamma_{[a, b]} =\Bigg\{ \gamma : \gamma>0 \quad \mbox{and} \quad \frac{ \log\big(| \zeta^{(m_{\gamma })} (\frac12+ i{\gamma }) | / (\!\log{{\gamma }} )^{m_{\gamma }}\big)}{\sqrt{\frac12\log\log {\gamma }}} \in [a, b] \Bigg\},\end{equation*}where the ${\gamma }$ are arranged in increasing order, is uniformly distributed modulo one. Here a and b are real numbers with $a<b$, and $m_\gamma$ denotes the multiplicity of the zero $1/2+i{\gamma }$. The same result holds when the ${\gamma }$’s are restricted to be the ordinates of simple zeros. With an extra hypothesis, we are also able to show an equidistribution result for the scaled numbers $\gamma (\!\log T)/2\pi$ with ${\gamma }\in \Gamma_{[a, b]}$ and $0<{\gamma }\leq T$.
期刊介绍:
Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.