{"title":"利用 q 高斯分布进行非线性降维","authors":"Motoshi Abe, Yuichiro Nomura, Takio Kurita","doi":"10.1007/s10044-024-01210-1","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the dimensionality reduction has become more important as the number of dimensions of data used in various tasks such as regression and classification has increased. As popular nonlinear dimensionality reduction methods, t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) have been proposed. However, the former outputs only one low-dimensional space determined by the t-distribution and the latter is difficult to control the distribution of distance between each pair of samples in low-dimensional space. To tackle these issues, we propose novel t-SNE and UMAP extended by q-Gaussian distribution, called q-Gaussian-distributed stochastic neighbor embedding (q-SNE) and q-Gaussian-distributed uniform manifold approximation and projection (q-UMAP). The q-Gaussian distribution is a probability distribution derived by maximizing the tsallis entropy by escort distribution with mean and variance, and a generalized version of Gaussian distribution with a hyperparameter q. Since the shape of the q-Gaussian distribution can be tuned smoothly by the hyperparameter q, q-SNE and q-UMAP can in- tuitively derive different embedding spaces. To show the quality of the proposed method, we compared the visualization of the low-dimensional embedding space and the classification accuracy by k-NN in the low-dimensional space. Empirical results on MNIST, COIL-20, OliverttiFaces and FashionMNIST demonstrate that the q-SNE and q-UMAP can derive better embedding spaces than t-SNE and UMAP.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"29 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear dimensionality reduction with q-Gaussian distribution\",\"authors\":\"Motoshi Abe, Yuichiro Nomura, Takio Kurita\",\"doi\":\"10.1007/s10044-024-01210-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In recent years, the dimensionality reduction has become more important as the number of dimensions of data used in various tasks such as regression and classification has increased. As popular nonlinear dimensionality reduction methods, t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) have been proposed. However, the former outputs only one low-dimensional space determined by the t-distribution and the latter is difficult to control the distribution of distance between each pair of samples in low-dimensional space. To tackle these issues, we propose novel t-SNE and UMAP extended by q-Gaussian distribution, called q-Gaussian-distributed stochastic neighbor embedding (q-SNE) and q-Gaussian-distributed uniform manifold approximation and projection (q-UMAP). The q-Gaussian distribution is a probability distribution derived by maximizing the tsallis entropy by escort distribution with mean and variance, and a generalized version of Gaussian distribution with a hyperparameter q. Since the shape of the q-Gaussian distribution can be tuned smoothly by the hyperparameter q, q-SNE and q-UMAP can in- tuitively derive different embedding spaces. To show the quality of the proposed method, we compared the visualization of the low-dimensional embedding space and the classification accuracy by k-NN in the low-dimensional space. Empirical results on MNIST, COIL-20, OliverttiFaces and FashionMNIST demonstrate that the q-SNE and q-UMAP can derive better embedding spaces than t-SNE and UMAP.</p>\",\"PeriodicalId\":54639,\"journal\":{\"name\":\"Pattern Analysis and Applications\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Analysis and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10044-024-01210-1\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01210-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Nonlinear dimensionality reduction with q-Gaussian distribution
In recent years, the dimensionality reduction has become more important as the number of dimensions of data used in various tasks such as regression and classification has increased. As popular nonlinear dimensionality reduction methods, t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) have been proposed. However, the former outputs only one low-dimensional space determined by the t-distribution and the latter is difficult to control the distribution of distance between each pair of samples in low-dimensional space. To tackle these issues, we propose novel t-SNE and UMAP extended by q-Gaussian distribution, called q-Gaussian-distributed stochastic neighbor embedding (q-SNE) and q-Gaussian-distributed uniform manifold approximation and projection (q-UMAP). The q-Gaussian distribution is a probability distribution derived by maximizing the tsallis entropy by escort distribution with mean and variance, and a generalized version of Gaussian distribution with a hyperparameter q. Since the shape of the q-Gaussian distribution can be tuned smoothly by the hyperparameter q, q-SNE and q-UMAP can in- tuitively derive different embedding spaces. To show the quality of the proposed method, we compared the visualization of the low-dimensional embedding space and the classification accuracy by k-NN in the low-dimensional space. Empirical results on MNIST, COIL-20, OliverttiFaces and FashionMNIST demonstrate that the q-SNE and q-UMAP can derive better embedding spaces than t-SNE and UMAP.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.