对或然率表进行高度私有化的大样本测试

Pub Date : 2024-02-29 DOI:10.1002/sta4.658
Sungkyu Jung, Seung Woo Kwak
{"title":"对或然率表进行高度私有化的大样本测试","authors":"Sungkyu Jung, Seung Woo Kwak","doi":"10.1002/sta4.658","DOIUrl":null,"url":null,"abstract":"Differential privacy is a foundational concept for safeguarding sensitive individual information when releasing data or statistical analysis results. In this study, we concentrate on the protection of privacy in the context of goodness‐of‐fit (GOF) and independence tests, utilizing perturbed contingency tables that adhere to Gaussian differential privacy within the high‐privacy regime, where the degrees of privacy protection increase as the sample size increases. We introduce private test procedures for GOF, independence of two variables and the equality of proportions in paired samples, similar to McNemar's test. For each of these hypothesis testing situations, we propose private test statistics based on the statistics and establish their asymptotic null distributions. We numerically confirm that Type I error rates of the proposed private test procedures are well controlled and have adequate power for larger sample sizes and effect sizes. The proposal is demonstrated in private inferences based on the American Time Use Survey data.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly private large‐sample tests for contingency tables\",\"authors\":\"Sungkyu Jung, Seung Woo Kwak\",\"doi\":\"10.1002/sta4.658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential privacy is a foundational concept for safeguarding sensitive individual information when releasing data or statistical analysis results. In this study, we concentrate on the protection of privacy in the context of goodness‐of‐fit (GOF) and independence tests, utilizing perturbed contingency tables that adhere to Gaussian differential privacy within the high‐privacy regime, where the degrees of privacy protection increase as the sample size increases. We introduce private test procedures for GOF, independence of two variables and the equality of proportions in paired samples, similar to McNemar's test. For each of these hypothesis testing situations, we propose private test statistics based on the statistics and establish their asymptotic null distributions. We numerically confirm that Type I error rates of the proposed private test procedures are well controlled and have adequate power for larger sample sizes and effect sizes. The proposal is demonstrated in private inferences based on the American Time Use Survey data.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

差分隐私是在发布数据或统计分析结果时保护敏感个人信息的基本概念。在本研究中,我们将重点放在拟合优度(GOF)和独立性检验中的隐私保护上,利用扰动的或然率表,在高隐私机制下坚持高斯差分隐私,即隐私保护程度随着样本量的增加而增加。我们为 GOF、两个变量的独立性和配对样本中的比例相等(类似于 McNemar 检验)引入了隐私检验程序。对于上述每种假设检验情况,我们都提出了基于统计量的私有检验统计量,并建立了它们的渐近零分布。我们用数字证实了所提出的私人检验程序的 I 类错误率得到了很好的控制,并且对于较大的样本量和效应量具有足够的功率。我们在基于美国时间使用调查数据的私人推断中演示了这一建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Highly private large‐sample tests for contingency tables
Differential privacy is a foundational concept for safeguarding sensitive individual information when releasing data or statistical analysis results. In this study, we concentrate on the protection of privacy in the context of goodness‐of‐fit (GOF) and independence tests, utilizing perturbed contingency tables that adhere to Gaussian differential privacy within the high‐privacy regime, where the degrees of privacy protection increase as the sample size increases. We introduce private test procedures for GOF, independence of two variables and the equality of proportions in paired samples, similar to McNemar's test. For each of these hypothesis testing situations, we propose private test statistics based on the statistics and establish their asymptotic null distributions. We numerically confirm that Type I error rates of the proposed private test procedures are well controlled and have adequate power for larger sample sizes and effect sizes. The proposal is demonstrated in private inferences based on the American Time Use Survey data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1