Samaneh Mokhtari, Ali Mesforush, Reza Mokhtari, Rahman Akbari
{"title":"解决随机扩散方程的 RBF-LOD 方法","authors":"Samaneh Mokhtari, Ali Mesforush, Reza Mokhtari, Rahman Akbari","doi":"10.1155/2024/9955109","DOIUrl":null,"url":null,"abstract":"In this study, we introduce an innovative approach to solving stochastic equations in two and three dimensions, leveraging a time-splitting strategy. Our method combines radial basis function (RBF) spatial discretization with the Crank–Nicolson scheme and the local one-dimensional (LOD) method for temporal approximation. To navigate the probabilistic space inherent in these equations, we employ the Monte Carlo method, providing accurate estimates for expectations and variations. We apply our approach to tackle challenging problems, including two-dimensional convection-diffusion and Burgers’ equations, resulting in reduced computational and memory requirements. Through rigorous testing against diverse problem sets, our methodology demonstrates efficiency and reliability, underscoring its potential as a valuable tool in solving complex multidimensional stochastic equations. We have validated the method’s stability and showcased its convergence as the number of collocation points increases. These findings serve as compelling evidence of the suggested method’s convergence properties.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"17 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An RBF-LOD Method for Solving Stochastic Diffusion Equations\",\"authors\":\"Samaneh Mokhtari, Ali Mesforush, Reza Mokhtari, Rahman Akbari\",\"doi\":\"10.1155/2024/9955109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce an innovative approach to solving stochastic equations in two and three dimensions, leveraging a time-splitting strategy. Our method combines radial basis function (RBF) spatial discretization with the Crank–Nicolson scheme and the local one-dimensional (LOD) method for temporal approximation. To navigate the probabilistic space inherent in these equations, we employ the Monte Carlo method, providing accurate estimates for expectations and variations. We apply our approach to tackle challenging problems, including two-dimensional convection-diffusion and Burgers’ equations, resulting in reduced computational and memory requirements. Through rigorous testing against diverse problem sets, our methodology demonstrates efficiency and reliability, underscoring its potential as a valuable tool in solving complex multidimensional stochastic equations. We have validated the method’s stability and showcased its convergence as the number of collocation points increases. These findings serve as compelling evidence of the suggested method’s convergence properties.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9955109\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/9955109","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
An RBF-LOD Method for Solving Stochastic Diffusion Equations
In this study, we introduce an innovative approach to solving stochastic equations in two and three dimensions, leveraging a time-splitting strategy. Our method combines radial basis function (RBF) spatial discretization with the Crank–Nicolson scheme and the local one-dimensional (LOD) method for temporal approximation. To navigate the probabilistic space inherent in these equations, we employ the Monte Carlo method, providing accurate estimates for expectations and variations. We apply our approach to tackle challenging problems, including two-dimensional convection-diffusion and Burgers’ equations, resulting in reduced computational and memory requirements. Through rigorous testing against diverse problem sets, our methodology demonstrates efficiency and reliability, underscoring its potential as a valuable tool in solving complex multidimensional stochastic equations. We have validated the method’s stability and showcased its convergence as the number of collocation points increases. These findings serve as compelling evidence of the suggested method’s convergence properties.
期刊介绍:
Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.