{"title":"使用高阶配位法数值求解伯格斯-赫胥黎方程","authors":"Aditi Singh, Sumita Dahiya, Homan Emadifar, Masoumeh Khademi","doi":"10.1155/2024/2439343","DOIUrl":null,"url":null,"abstract":"In this paper, the collocation method with cubic B-spline as basis function has been successfully applied to numerically solve the Burgers–Huxley equation. This equation illustrates a model for describing the interaction between reaction mechanisms, convection effects, and diffusion transport. Quasi-linearization has been employed to deal with the nonlinearity of equations. The Crank–Nicolson implicit scheme is used for discretization of the equation and the resulting system turned out to be semi-implicit. The stability of the method is discussed using Fourier series analysis (von Neumann method), and it has been concluded that the method is unconditionally stable. Various numerical experiments have been performed to demonstrate the authenticity of the scheme. We have found that the computed numerical solutions are in good agreement with the exact solutions and are competent with those available in the literature. Accuracy and minimal computational efforts are the key features of the proposed method.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"170 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Solution of Burgers–Huxley Equation Using a Higher Order Collocation Method\",\"authors\":\"Aditi Singh, Sumita Dahiya, Homan Emadifar, Masoumeh Khademi\",\"doi\":\"10.1155/2024/2439343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the collocation method with cubic B-spline as basis function has been successfully applied to numerically solve the Burgers–Huxley equation. This equation illustrates a model for describing the interaction between reaction mechanisms, convection effects, and diffusion transport. Quasi-linearization has been employed to deal with the nonlinearity of equations. The Crank–Nicolson implicit scheme is used for discretization of the equation and the resulting system turned out to be semi-implicit. The stability of the method is discussed using Fourier series analysis (von Neumann method), and it has been concluded that the method is unconditionally stable. Various numerical experiments have been performed to demonstrate the authenticity of the scheme. We have found that the computed numerical solutions are in good agreement with the exact solutions and are competent with those available in the literature. Accuracy and minimal computational efforts are the key features of the proposed method.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"170 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2439343\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/2439343","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文成功地应用了以三次 B 样条为基础函数的配位法来数值求解伯格斯-赫胥黎方程。该方程是描述反应机制、对流效应和扩散传输之间相互作用的模型。准线性化被用来处理方程的非线性问题。方程的离散化采用了 Crank-Nicolson 隐式方案,所得到的系统是半隐式的。利用傅里叶级数分析(von Neumann 方法)讨论了该方法的稳定性,得出的结论是该方法是无条件稳定的。为了证明该方法的真实性,我们进行了各种数值实验。我们发现,计算出的数值解与精确解十分吻合,与文献中的数值解也不相上下。精确性和最小计算量是所提方法的主要特点。
Numerical Solution of Burgers–Huxley Equation Using a Higher Order Collocation Method
In this paper, the collocation method with cubic B-spline as basis function has been successfully applied to numerically solve the Burgers–Huxley equation. This equation illustrates a model for describing the interaction between reaction mechanisms, convection effects, and diffusion transport. Quasi-linearization has been employed to deal with the nonlinearity of equations. The Crank–Nicolson implicit scheme is used for discretization of the equation and the resulting system turned out to be semi-implicit. The stability of the method is discussed using Fourier series analysis (von Neumann method), and it has been concluded that the method is unconditionally stable. Various numerical experiments have been performed to demonstrate the authenticity of the scheme. We have found that the computed numerical solutions are in good agreement with the exact solutions and are competent with those available in the literature. Accuracy and minimal computational efforts are the key features of the proposed method.
期刊介绍:
Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.