驾驭复杂性:具有跟踪误差和权重约束的高维度受限投资组合分析

Mehmet Caner, Qingliang Fan, Yingying Li
{"title":"驾驭复杂性:具有跟踪误差和权重约束的高维度受限投资组合分析","authors":"Mehmet Caner, Qingliang Fan, Yingying Li","doi":"arxiv-2402.17523","DOIUrl":null,"url":null,"abstract":"This paper analyzes the statistical properties of constrained portfolio\nformation in a high dimensional portfolio with a large number of assets.\nNamely, we consider portfolios with tracking error constraints, portfolios with\ntracking error jointly with weight (equality or inequality) restrictions, and\nportfolios with only weight restrictions. Tracking error is the portfolio's\nperformance measured against a benchmark (an index usually), {\\color{black}{and\nweight constraints refers to specific allocation of assets within the\nportfolio, which often come in the form of regulatory requirement or fund\nprospectus.}} We show how these portfolios can be estimated consistently in\nlarge dimensions, even when the number of assets is larger than the time span\nof the portfolio. We also provide rate of convergence results for weights of\nthe constrained portfolio, risk of the constrained portfolio and the Sharpe\nRatio of the constrained portfolio. To achieve those results we use a new\nmachine learning technique that merges factor models with nodewise regression\nin statistics. Simulation results and empirics show very good performance of\nour method.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigating Complexity: Constrained Portfolio Analysis in High Dimensions with Tracking Error and Weight Constraints\",\"authors\":\"Mehmet Caner, Qingliang Fan, Yingying Li\",\"doi\":\"arxiv-2402.17523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper analyzes the statistical properties of constrained portfolio\\nformation in a high dimensional portfolio with a large number of assets.\\nNamely, we consider portfolios with tracking error constraints, portfolios with\\ntracking error jointly with weight (equality or inequality) restrictions, and\\nportfolios with only weight restrictions. Tracking error is the portfolio's\\nperformance measured against a benchmark (an index usually), {\\\\color{black}{and\\nweight constraints refers to specific allocation of assets within the\\nportfolio, which often come in the form of regulatory requirement or fund\\nprospectus.}} We show how these portfolios can be estimated consistently in\\nlarge dimensions, even when the number of assets is larger than the time span\\nof the portfolio. We also provide rate of convergence results for weights of\\nthe constrained portfolio, risk of the constrained portfolio and the Sharpe\\nRatio of the constrained portfolio. To achieve those results we use a new\\nmachine learning technique that merges factor models with nodewise regression\\nin statistics. Simulation results and empirics show very good performance of\\nour method.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2402.17523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.17523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了具有大量资产的高维投资组合中受约束投资组合形式的统计特性。也就是说,我们考虑了具有跟踪误差约束的投资组合、具有跟踪误差与权重(相等或不相等)联合约束的投资组合以及仅具有权重约束的投资组合。跟踪误差是指投资组合相对于基准(通常是指数)的表现,{\color{black}{而权重限制是指投资组合内资产的具体分配,通常以监管要求或基金说明书的形式出现。}我们展示了这些投资组合如何在大维度上进行一致估计,即使资产数量大于投资组合的时间跨度。我们还提供了受约束投资组合权重、受约束投资组合风险和受约束投资组合夏普比率的收敛率结果。为了获得这些结果,我们使用了一种新的机器学习技术,该技术将因子模型与统计中的节点回归相结合。模拟结果和经验表明,我们的方法性能非常好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Navigating Complexity: Constrained Portfolio Analysis in High Dimensions with Tracking Error and Weight Constraints
This paper analyzes the statistical properties of constrained portfolio formation in a high dimensional portfolio with a large number of assets. Namely, we consider portfolios with tracking error constraints, portfolios with tracking error jointly with weight (equality or inequality) restrictions, and portfolios with only weight restrictions. Tracking error is the portfolio's performance measured against a benchmark (an index usually), {\color{black}{and weight constraints refers to specific allocation of assets within the portfolio, which often come in the form of regulatory requirement or fund prospectus.}} We show how these portfolios can be estimated consistently in large dimensions, even when the number of assets is larger than the time span of the portfolio. We also provide rate of convergence results for weights of the constrained portfolio, risk of the constrained portfolio and the Sharpe Ratio of the constrained portfolio. To achieve those results we use a new machine learning technique that merges factor models with nodewise regression in statistics. Simulation results and empirics show very good performance of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macroscopic properties of equity markets: stylized facts and portfolio performance Tuning into Climate Risks: Extracting Innovation from TV News for Clean Energy Firms On the macroeconomic fundamentals of long-term volatilities and dynamic correlations in COMEX copper futures Market information of the fractional stochastic regularity model Critical Dynamics of Random Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1