Chiara Anglana, Fabrizio Barozzi, Piergiorgio Capaci, Danilo Migoni, Makarena Rojas, Francesco Paolo Fanizzi, Gian-Pietro Di Sansebastiano
{"title":"用于生物监测和生物技术应用的三种水生苔藓的腋生培养特征。","authors":"Chiara Anglana, Fabrizio Barozzi, Piergiorgio Capaci, Danilo Migoni, Makarena Rojas, Francesco Paolo Fanizzi, Gian-Pietro Di Sansebastiano","doi":"10.1016/j.aquabot.2024.103762","DOIUrl":null,"url":null,"abstract":"<div><p>Bryophytes are known bioindicators and are also emerging as effective tools for bioremediation. <em>In vitro</em> culture of bryophytes is an important tool for the implementation of several research and industrial applications but it is a poorly explored technology. In this study, we characterize in sterile conditions three aquatic moss species largely used all over the world for decoration but poorly studied: <em>Leptodictyum riparium</em>, <em>Vesicularia montagnei</em> and <em>Taxiphyllum barbieri</em>. They share interesting morphological traits that suggest their use as natural biofilters. Results include protocols for the establishment of axenic <em>in vitro</em> cultures, different for the different species because of their sensitivity to treatments, on which the morphological characters of the three species were described. The sporophytic generation was observed in <em>L. riparium</em> and <em>V. montagnei</em> but not in <em>T. barbieri</em> that may be unable to develop the diploid generation. The effect of plant growth regulators on gametophyte fragments was described applying 6-benzylaminopurine as cytokinin and α-naphthalene acetic acid as auxin. The absorption of several trace elements was measured in a mixed solution simulating environmental pollution, evidencing specie specificity toward the different elements. The possible applications for these mosses are not only in the field of bioindication but also in bioremediation and environmental restoration. Our study produced widely applicable protocols and basic information for further applications.</p></div>","PeriodicalId":8273,"journal":{"name":"Aquatic Botany","volume":"193 ","pages":"Article 103762"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304377024000147/pdfft?md5=c75d2a5e2fea6a25fbfc644dd0d33891&pid=1-s2.0-S0304377024000147-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterization of three species of aquatic mosses in axenic culture for biomonitoring and biotechnological applications\",\"authors\":\"Chiara Anglana, Fabrizio Barozzi, Piergiorgio Capaci, Danilo Migoni, Makarena Rojas, Francesco Paolo Fanizzi, Gian-Pietro Di Sansebastiano\",\"doi\":\"10.1016/j.aquabot.2024.103762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bryophytes are known bioindicators and are also emerging as effective tools for bioremediation. <em>In vitro</em> culture of bryophytes is an important tool for the implementation of several research and industrial applications but it is a poorly explored technology. In this study, we characterize in sterile conditions three aquatic moss species largely used all over the world for decoration but poorly studied: <em>Leptodictyum riparium</em>, <em>Vesicularia montagnei</em> and <em>Taxiphyllum barbieri</em>. They share interesting morphological traits that suggest their use as natural biofilters. Results include protocols for the establishment of axenic <em>in vitro</em> cultures, different for the different species because of their sensitivity to treatments, on which the morphological characters of the three species were described. The sporophytic generation was observed in <em>L. riparium</em> and <em>V. montagnei</em> but not in <em>T. barbieri</em> that may be unable to develop the diploid generation. The effect of plant growth regulators on gametophyte fragments was described applying 6-benzylaminopurine as cytokinin and α-naphthalene acetic acid as auxin. The absorption of several trace elements was measured in a mixed solution simulating environmental pollution, evidencing specie specificity toward the different elements. The possible applications for these mosses are not only in the field of bioindication but also in bioremediation and environmental restoration. Our study produced widely applicable protocols and basic information for further applications.</p></div>\",\"PeriodicalId\":8273,\"journal\":{\"name\":\"Aquatic Botany\",\"volume\":\"193 \",\"pages\":\"Article 103762\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0304377024000147/pdfft?md5=c75d2a5e2fea6a25fbfc644dd0d33891&pid=1-s2.0-S0304377024000147-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304377024000147\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304377024000147","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Characterization of three species of aquatic mosses in axenic culture for biomonitoring and biotechnological applications
Bryophytes are known bioindicators and are also emerging as effective tools for bioremediation. In vitro culture of bryophytes is an important tool for the implementation of several research and industrial applications but it is a poorly explored technology. In this study, we characterize in sterile conditions three aquatic moss species largely used all over the world for decoration but poorly studied: Leptodictyum riparium, Vesicularia montagnei and Taxiphyllum barbieri. They share interesting morphological traits that suggest their use as natural biofilters. Results include protocols for the establishment of axenic in vitro cultures, different for the different species because of their sensitivity to treatments, on which the morphological characters of the three species were described. The sporophytic generation was observed in L. riparium and V. montagnei but not in T. barbieri that may be unable to develop the diploid generation. The effect of plant growth regulators on gametophyte fragments was described applying 6-benzylaminopurine as cytokinin and α-naphthalene acetic acid as auxin. The absorption of several trace elements was measured in a mixed solution simulating environmental pollution, evidencing specie specificity toward the different elements. The possible applications for these mosses are not only in the field of bioindication but also in bioremediation and environmental restoration. Our study produced widely applicable protocols and basic information for further applications.
期刊介绍:
Aquatic Botany offers a platform for papers relevant to a broad international readership on fundamental and applied aspects of marine and freshwater macroscopic plants in a context of ecology or environmental biology. This includes molecular, biochemical and physiological aspects of macroscopic aquatic plants as well as the classification, structure, function, dynamics and ecological interactions in plant-dominated aquatic communities and ecosystems. It is an outlet for papers dealing with research on the consequences of disturbance and stressors (e.g. environmental fluctuations and climate change, pollution, grazing and pathogens), use and management of aquatic plants (plant production and decomposition, commercial harvest, plant control) and the conservation of aquatic plant communities (breeding, transplantation and restoration). Specialized publications on certain rare taxa or papers on aquatic macroscopic plants from under-represented regions in the world can also find their place, subject to editor evaluation. Studies on fungi or microalgae will remain outside the scope of Aquatic Botany.