Emily C Fogarty, Matthew S Schechter, Karen Lolans, Madeline L Sheahan, Iva Veseli, Ryan M Moore, Evan Kiefl, Thomas Moody, Phoebe A Rice, Michael K Yu, Mark Mimee, Eugene B Chang, Hans-Joachim Ruscheweyh, Shinichi Sunagawa, Sandra L Mclellan, Amy D Willis, Laurie E Comstock, A Murat Eren
{"title":"隐性质粒是人类肠道中数量最多的遗传因子之一。","authors":"Emily C Fogarty, Matthew S Schechter, Karen Lolans, Madeline L Sheahan, Iva Veseli, Ryan M Moore, Evan Kiefl, Thomas Moody, Phoebe A Rice, Michael K Yu, Mark Mimee, Eugene B Chang, Hans-Joachim Ruscheweyh, Shinichi Sunagawa, Sandra L Mclellan, Amy D Willis, Laurie E Comstock, A Murat Eren","doi":"10.1016/j.cell.2024.01.039","DOIUrl":null,"url":null,"abstract":"<p><p>Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry \"cryptic\" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.</p>","PeriodicalId":9656,"journal":{"name":"Cell","volume":"187 5","pages":"1206-1222.e16"},"PeriodicalIF":45.5000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973873/pdf/","citationCount":"0","resultStr":"{\"title\":\"A cryptic plasmid is among the most numerous genetic elements in the human gut.\",\"authors\":\"Emily C Fogarty, Matthew S Schechter, Karen Lolans, Madeline L Sheahan, Iva Veseli, Ryan M Moore, Evan Kiefl, Thomas Moody, Phoebe A Rice, Michael K Yu, Mark Mimee, Eugene B Chang, Hans-Joachim Ruscheweyh, Shinichi Sunagawa, Sandra L Mclellan, Amy D Willis, Laurie E Comstock, A Murat Eren\",\"doi\":\"10.1016/j.cell.2024.01.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry \\\"cryptic\\\" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.</p>\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\"187 5\",\"pages\":\"1206-1222.e16\"},\"PeriodicalIF\":45.5000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10973873/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2024.01.039\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.01.039","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A cryptic plasmid is among the most numerous genetic elements in the human gut.
Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.