Shira Shaham-Niv , Assaf Ezra , Dor Zaguri , Stav Roni Shotan , Elvira Haimov , Hamutal Engel , Tamara Brider , Luba Simhaev , Haim Michael Barr , Lihi Adler-Abramovich , Ehud Gazit
{"title":"以苯丙氨酸集合体为靶点作为苯丙酮尿症的前瞻性疾病调节疗法","authors":"Shira Shaham-Niv , Assaf Ezra , Dor Zaguri , Stav Roni Shotan , Elvira Haimov , Hamutal Engel , Tamara Brider , Luba Simhaev , Haim Michael Barr , Lihi Adler-Abramovich , Ehud Gazit","doi":"10.1016/j.bpc.2024.107215","DOIUrl":null,"url":null,"abstract":"<div><p>Phenylketonuria is characterized by the accumulation of phenylalanine, resulting in severe cognitive and neurological disorders if not treated by a remarkably strict diet. There are two approved drugs today, yet both provide only a partial solution. We have previously demonstrated the formation of amyloid-like toxic assemblies by aggregation of phenylalanine, suggesting a new therapeutic target to be further pursued. Moreover, we showed that compounds that halt the formation of these assemblies also prevent their resulting toxicity. Here, we performed high-throughput screening, searching for compounds with inhibitory effects on phenylalanine aggregation. Morin hydrate, one of the most promising hits revealed during the screen, was chosen to be tested in vivo using a phenylketonuria mouse model. Morin hydrate significantly improved cognitive and motor function with a reduction in the number of phenylalanine brain deposits. Moreover, while phenylalanine levels remained high, we observed a recovery in dopaminergic, adrenergic, and neuronal markers. To conclude, the ability of Morin hydrate to halt phenylalanine aggregation without reducing phenylalanine levels implies the toxic role of the phenylalanine assemblies in phenylketonuria and opens new avenues for disease-modifying treatment.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"308 ","pages":"Article 107215"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting phenylalanine assemblies as a prospective disease-modifying therapy for phenylketonuria\",\"authors\":\"Shira Shaham-Niv , Assaf Ezra , Dor Zaguri , Stav Roni Shotan , Elvira Haimov , Hamutal Engel , Tamara Brider , Luba Simhaev , Haim Michael Barr , Lihi Adler-Abramovich , Ehud Gazit\",\"doi\":\"10.1016/j.bpc.2024.107215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phenylketonuria is characterized by the accumulation of phenylalanine, resulting in severe cognitive and neurological disorders if not treated by a remarkably strict diet. There are two approved drugs today, yet both provide only a partial solution. We have previously demonstrated the formation of amyloid-like toxic assemblies by aggregation of phenylalanine, suggesting a new therapeutic target to be further pursued. Moreover, we showed that compounds that halt the formation of these assemblies also prevent their resulting toxicity. Here, we performed high-throughput screening, searching for compounds with inhibitory effects on phenylalanine aggregation. Morin hydrate, one of the most promising hits revealed during the screen, was chosen to be tested in vivo using a phenylketonuria mouse model. Morin hydrate significantly improved cognitive and motor function with a reduction in the number of phenylalanine brain deposits. Moreover, while phenylalanine levels remained high, we observed a recovery in dopaminergic, adrenergic, and neuronal markers. To conclude, the ability of Morin hydrate to halt phenylalanine aggregation without reducing phenylalanine levels implies the toxic role of the phenylalanine assemblies in phenylketonuria and opens new avenues for disease-modifying treatment.</p></div>\",\"PeriodicalId\":8979,\"journal\":{\"name\":\"Biophysical chemistry\",\"volume\":\"308 \",\"pages\":\"Article 107215\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301462224000449\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224000449","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Targeting phenylalanine assemblies as a prospective disease-modifying therapy for phenylketonuria
Phenylketonuria is characterized by the accumulation of phenylalanine, resulting in severe cognitive and neurological disorders if not treated by a remarkably strict diet. There are two approved drugs today, yet both provide only a partial solution. We have previously demonstrated the formation of amyloid-like toxic assemblies by aggregation of phenylalanine, suggesting a new therapeutic target to be further pursued. Moreover, we showed that compounds that halt the formation of these assemblies also prevent their resulting toxicity. Here, we performed high-throughput screening, searching for compounds with inhibitory effects on phenylalanine aggregation. Morin hydrate, one of the most promising hits revealed during the screen, was chosen to be tested in vivo using a phenylketonuria mouse model. Morin hydrate significantly improved cognitive and motor function with a reduction in the number of phenylalanine brain deposits. Moreover, while phenylalanine levels remained high, we observed a recovery in dopaminergic, adrenergic, and neuronal markers. To conclude, the ability of Morin hydrate to halt phenylalanine aggregation without reducing phenylalanine levels implies the toxic role of the phenylalanine assemblies in phenylketonuria and opens new avenues for disease-modifying treatment.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.