{"title":"基于网络切片的学习技术,用于 5G 及其他网络中的物联网","authors":"Wafa Hamdi;Chahrazed Ksouri;Hasan Bulut;Mohamed Mosbah","doi":"10.1109/COMST.2024.3372083","DOIUrl":null,"url":null,"abstract":"The effects of transport development on people’s lives are diverse, ranging from economy to tourism, health care, etc. Great progress has been made in this area, which has led to the emergence of the Internet of Vehicles (IoV) concept. The main objective of this concept is to offer a safer and more comfortable travel experience through making available a vast array of applications, by relying on a range of communication technologies including the fifth-generation mobile networks. The proposed applications have personalized Quality of Service (QoS) requirements, which raise new challenging issues for the management and allocation of resources. Currently, this interest has been doubled with the start of the discussion of the sixth-generation mobile networks. In this context, Network Slicing (NS) was presented as one of the key technologies in the 5G architecture to address these challenges. In this article, we try to bring together the effects of NS implications in the Internet of Vehicles field and show the impact on transport development. We begin by reviewing the state of the art of NS in IoV in terms of architecture, types, life cycle, enabling technologies, network parts, and evolution within cellular networks. Then, we discuss the benefits brought by the use of NS in such a dynamic environment, along with the technical challenges. Moreover, we provide a comprehensive review of NS deploying various aspects of Learning Techniques for the Internet of Vehicles. Afterwards, we present Network Slicing utilization in different IoV application scenarios through different domains; terrestrial, aerial, and marine. In addition, we review Vehicle-to-Everything (V2X) datasets as well as existing implementation tools; besides presenting a concise summary of the Network Slicing-related projects that have an impact on IoV. Finally, in order to promote the deployment of Network Slicing in IoV, we provide some directions for future research work. We believe that the survey will be useful for researchers from academia and industry. First, to acquire a holistic vision regarding IoV-based NS realization and identify the challenges hindering it. Second, to understand the progression of IoV powered NS applications in the different fields (terrestrial, aerial, and marine). Finally, to determine the opportunities for using Machine Learning Techniques (MLT), in order to propose their own solutions to foster NS-IoV integration.","PeriodicalId":55029,"journal":{"name":"IEEE Communications Surveys and Tutorials","volume":"26 3","pages":"1989-2047"},"PeriodicalIF":34.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network Slicing-Based Learning Techniques for IoV in 5G and Beyond Networks\",\"authors\":\"Wafa Hamdi;Chahrazed Ksouri;Hasan Bulut;Mohamed Mosbah\",\"doi\":\"10.1109/COMST.2024.3372083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of transport development on people’s lives are diverse, ranging from economy to tourism, health care, etc. Great progress has been made in this area, which has led to the emergence of the Internet of Vehicles (IoV) concept. The main objective of this concept is to offer a safer and more comfortable travel experience through making available a vast array of applications, by relying on a range of communication technologies including the fifth-generation mobile networks. The proposed applications have personalized Quality of Service (QoS) requirements, which raise new challenging issues for the management and allocation of resources. Currently, this interest has been doubled with the start of the discussion of the sixth-generation mobile networks. In this context, Network Slicing (NS) was presented as one of the key technologies in the 5G architecture to address these challenges. In this article, we try to bring together the effects of NS implications in the Internet of Vehicles field and show the impact on transport development. We begin by reviewing the state of the art of NS in IoV in terms of architecture, types, life cycle, enabling technologies, network parts, and evolution within cellular networks. Then, we discuss the benefits brought by the use of NS in such a dynamic environment, along with the technical challenges. Moreover, we provide a comprehensive review of NS deploying various aspects of Learning Techniques for the Internet of Vehicles. Afterwards, we present Network Slicing utilization in different IoV application scenarios through different domains; terrestrial, aerial, and marine. In addition, we review Vehicle-to-Everything (V2X) datasets as well as existing implementation tools; besides presenting a concise summary of the Network Slicing-related projects that have an impact on IoV. Finally, in order to promote the deployment of Network Slicing in IoV, we provide some directions for future research work. We believe that the survey will be useful for researchers from academia and industry. First, to acquire a holistic vision regarding IoV-based NS realization and identify the challenges hindering it. Second, to understand the progression of IoV powered NS applications in the different fields (terrestrial, aerial, and marine). Finally, to determine the opportunities for using Machine Learning Techniques (MLT), in order to propose their own solutions to foster NS-IoV integration.\",\"PeriodicalId\":55029,\"journal\":{\"name\":\"IEEE Communications Surveys and Tutorials\",\"volume\":\"26 3\",\"pages\":\"1989-2047\"},\"PeriodicalIF\":34.4000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Surveys and Tutorials\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10457570/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Surveys and Tutorials","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10457570/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Network Slicing-Based Learning Techniques for IoV in 5G and Beyond Networks
The effects of transport development on people’s lives are diverse, ranging from economy to tourism, health care, etc. Great progress has been made in this area, which has led to the emergence of the Internet of Vehicles (IoV) concept. The main objective of this concept is to offer a safer and more comfortable travel experience through making available a vast array of applications, by relying on a range of communication technologies including the fifth-generation mobile networks. The proposed applications have personalized Quality of Service (QoS) requirements, which raise new challenging issues for the management and allocation of resources. Currently, this interest has been doubled with the start of the discussion of the sixth-generation mobile networks. In this context, Network Slicing (NS) was presented as one of the key technologies in the 5G architecture to address these challenges. In this article, we try to bring together the effects of NS implications in the Internet of Vehicles field and show the impact on transport development. We begin by reviewing the state of the art of NS in IoV in terms of architecture, types, life cycle, enabling technologies, network parts, and evolution within cellular networks. Then, we discuss the benefits brought by the use of NS in such a dynamic environment, along with the technical challenges. Moreover, we provide a comprehensive review of NS deploying various aspects of Learning Techniques for the Internet of Vehicles. Afterwards, we present Network Slicing utilization in different IoV application scenarios through different domains; terrestrial, aerial, and marine. In addition, we review Vehicle-to-Everything (V2X) datasets as well as existing implementation tools; besides presenting a concise summary of the Network Slicing-related projects that have an impact on IoV. Finally, in order to promote the deployment of Network Slicing in IoV, we provide some directions for future research work. We believe that the survey will be useful for researchers from academia and industry. First, to acquire a holistic vision regarding IoV-based NS realization and identify the challenges hindering it. Second, to understand the progression of IoV powered NS applications in the different fields (terrestrial, aerial, and marine). Finally, to determine the opportunities for using Machine Learning Techniques (MLT), in order to propose their own solutions to foster NS-IoV integration.
期刊介绍:
IEEE Communications Surveys & Tutorials is an online journal published by the IEEE Communications Society for tutorials and surveys covering all aspects of the communications field. Telecommunications technology is progressing at a rapid pace, and the IEEE Communications Society is committed to providing researchers and other professionals the information and tools to stay abreast. IEEE Communications Surveys and Tutorials focuses on integrating and adding understanding to the existing literature on communications, putting results in context. Whether searching for in-depth information about a familiar area or an introduction into a new area, IEEE Communications Surveys & Tutorials aims to be the premier source of peer-reviewed, comprehensive tutorials and surveys, and pointers to further sources. IEEE Communications Surveys & Tutorials publishes only articles exclusively written for IEEE Communications Surveys & Tutorials and go through a rigorous review process before their publication in the quarterly issues.
A tutorial article in the IEEE Communications Surveys & Tutorials should be designed to help the reader to become familiar with and learn something specific about a chosen topic. In contrast, the term survey, as applied here, is defined to mean a survey of the literature. A survey article in IEEE Communications Surveys & Tutorials should provide a comprehensive review of developments in a selected area, covering its development from its inception to its current state and beyond, and illustrating its development through liberal citations from the literature. Both tutorials and surveys should be tutorial in nature and should be written in a style comprehensible to readers outside the specialty of the article.