Selen Polat , Yusufhan Yazir , Gökhan Duruksu , Kamil Can Kiliç , Serap Mert , Gülçin Gacar , Büşra Öncel Duman , Zehra Seda Halbutoğullari
{"title":"研究作为间充质干细胞替代来源的包膜细胞的分化潜力","authors":"Selen Polat , Yusufhan Yazir , Gökhan Duruksu , Kamil Can Kiliç , Serap Mert , Gülçin Gacar , Büşra Öncel Duman , Zehra Seda Halbutoğullari","doi":"10.1016/j.acthis.2024.152145","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The mesenchymal stem cells (MSCs) with characterized by their multipotency and capacity to differentiate into various tissue cell types, have led to their incorporation in regenerative medicine research. However, the limited numbers of MSCs in the human body and their diverse differentiation capabilities in tissues highlight the need for exploring alternative regenerative cell sources. In this study, therefore, we conducted molecular level examinations to determine whether pericytes, specialized cell communities situated near blood vessels, could serve as a substitute for human bone marrow-derived mesenchymal stem cells (hBM-MSCs). In this context, the potential application of pericytes surrounds the vessels when MSCs are insufficient for functional purposes.</p></div><div><h3>Methods</h3><p>The pericytes utilized in this investigation were derived from the placenta and characterized at the third passage. Similarly, the hBM-MSCs were also characterized at the third passage. The pluripotent properties of the two cell types were assessed at the gene expression level. Thereafter, both pericytes and hBM-MSCs were directed towards adipogenic, osteogenic and chondrogenic differentiation. The cells in both groups were examined on days 7, 14, and, 21 and their differentiation status was compared both immunohistochemically and through gene expression analysis.</p></div><div><h3>Results</h3><p>Upon comparing the pluripotency characteristics of placental pericytes and hBM-MSCs, it was discovered that there was a substantial upregulation of the pluripotency genes FoxD3, Sox2, ZPF42, UTF1, and, Lin28 in both cell types. However, no significant expression of the genes Msx1, Nr6a1, Pdx1, and, GATA6 was observed in either cell type. It was also noted that pericytes differentiate into adipogenic, osteogenic and, chondrogenic lineages similar to hBM-MSCs.</p></div><div><h3>Discussion</h3><p>As a result, it has been determined that pericytes exhibit high differentiation and proliferation properties similar to those of MSCs, and therefore can be considered a suitable alternative cell source for regenerative medicine and tissue engineering research, in cases where MSCs are not available or insufficient. It is notable that pericytes have been suggested as a potential substitute in studies where MSCs are lacking.</p></div>","PeriodicalId":6961,"journal":{"name":"Acta histochemica","volume":"126 3","pages":"Article 152145"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the differentiation potential of pericyte cells as an alternative source of mesenchymal stem cells\",\"authors\":\"Selen Polat , Yusufhan Yazir , Gökhan Duruksu , Kamil Can Kiliç , Serap Mert , Gülçin Gacar , Büşra Öncel Duman , Zehra Seda Halbutoğullari\",\"doi\":\"10.1016/j.acthis.2024.152145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The mesenchymal stem cells (MSCs) with characterized by their multipotency and capacity to differentiate into various tissue cell types, have led to their incorporation in regenerative medicine research. However, the limited numbers of MSCs in the human body and their diverse differentiation capabilities in tissues highlight the need for exploring alternative regenerative cell sources. In this study, therefore, we conducted molecular level examinations to determine whether pericytes, specialized cell communities situated near blood vessels, could serve as a substitute for human bone marrow-derived mesenchymal stem cells (hBM-MSCs). In this context, the potential application of pericytes surrounds the vessels when MSCs are insufficient for functional purposes.</p></div><div><h3>Methods</h3><p>The pericytes utilized in this investigation were derived from the placenta and characterized at the third passage. Similarly, the hBM-MSCs were also characterized at the third passage. The pluripotent properties of the two cell types were assessed at the gene expression level. Thereafter, both pericytes and hBM-MSCs were directed towards adipogenic, osteogenic and chondrogenic differentiation. The cells in both groups were examined on days 7, 14, and, 21 and their differentiation status was compared both immunohistochemically and through gene expression analysis.</p></div><div><h3>Results</h3><p>Upon comparing the pluripotency characteristics of placental pericytes and hBM-MSCs, it was discovered that there was a substantial upregulation of the pluripotency genes FoxD3, Sox2, ZPF42, UTF1, and, Lin28 in both cell types. However, no significant expression of the genes Msx1, Nr6a1, Pdx1, and, GATA6 was observed in either cell type. It was also noted that pericytes differentiate into adipogenic, osteogenic and, chondrogenic lineages similar to hBM-MSCs.</p></div><div><h3>Discussion</h3><p>As a result, it has been determined that pericytes exhibit high differentiation and proliferation properties similar to those of MSCs, and therefore can be considered a suitable alternative cell source for regenerative medicine and tissue engineering research, in cases where MSCs are not available or insufficient. It is notable that pericytes have been suggested as a potential substitute in studies where MSCs are lacking.</p></div>\",\"PeriodicalId\":6961,\"journal\":{\"name\":\"Acta histochemica\",\"volume\":\"126 3\",\"pages\":\"Article 152145\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta histochemica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0065128124000138\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta histochemica","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128124000138","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Investigation of the differentiation potential of pericyte cells as an alternative source of mesenchymal stem cells
Background
The mesenchymal stem cells (MSCs) with characterized by their multipotency and capacity to differentiate into various tissue cell types, have led to their incorporation in regenerative medicine research. However, the limited numbers of MSCs in the human body and their diverse differentiation capabilities in tissues highlight the need for exploring alternative regenerative cell sources. In this study, therefore, we conducted molecular level examinations to determine whether pericytes, specialized cell communities situated near blood vessels, could serve as a substitute for human bone marrow-derived mesenchymal stem cells (hBM-MSCs). In this context, the potential application of pericytes surrounds the vessels when MSCs are insufficient for functional purposes.
Methods
The pericytes utilized in this investigation were derived from the placenta and characterized at the third passage. Similarly, the hBM-MSCs were also characterized at the third passage. The pluripotent properties of the two cell types were assessed at the gene expression level. Thereafter, both pericytes and hBM-MSCs were directed towards adipogenic, osteogenic and chondrogenic differentiation. The cells in both groups were examined on days 7, 14, and, 21 and their differentiation status was compared both immunohistochemically and through gene expression analysis.
Results
Upon comparing the pluripotency characteristics of placental pericytes and hBM-MSCs, it was discovered that there was a substantial upregulation of the pluripotency genes FoxD3, Sox2, ZPF42, UTF1, and, Lin28 in both cell types. However, no significant expression of the genes Msx1, Nr6a1, Pdx1, and, GATA6 was observed in either cell type. It was also noted that pericytes differentiate into adipogenic, osteogenic and, chondrogenic lineages similar to hBM-MSCs.
Discussion
As a result, it has been determined that pericytes exhibit high differentiation and proliferation properties similar to those of MSCs, and therefore can be considered a suitable alternative cell source for regenerative medicine and tissue engineering research, in cases where MSCs are not available or insufficient. It is notable that pericytes have been suggested as a potential substitute in studies where MSCs are lacking.
期刊介绍:
Acta histochemica, a journal of structural biochemistry of cells and tissues, publishes original research articles, short communications, reviews, letters to the editor, meeting reports and abstracts of meetings. The aim of the journal is to provide a forum for the cytochemical and histochemical research community in the life sciences, including cell biology, biotechnology, neurobiology, immunobiology, pathology, pharmacology, botany, zoology and environmental and toxicological research. The journal focuses on new developments in cytochemistry and histochemistry and their applications. Manuscripts reporting on studies of living cells and tissues are particularly welcome. Understanding the complexity of cells and tissues, i.e. their biocomplexity and biodiversity, is a major goal of the journal and reports on this topic are especially encouraged. Original research articles, short communications and reviews that report on new developments in cytochemistry and histochemistry are welcomed, especially when molecular biology is combined with the use of advanced microscopical techniques including image analysis and cytometry. Letters to the editor should comment or interpret previously published articles in the journal to trigger scientific discussions. Meeting reports are considered to be very important publications in the journal because they are excellent opportunities to present state-of-the-art overviews of fields in research where the developments are fast and hard to follow. Authors of meeting reports should consult the editors before writing a report. The editorial policy of the editors and the editorial board is rapid publication. Once a manuscript is received by one of the editors, an editorial decision about acceptance, revision or rejection will be taken within a month. It is the aim of the publishers to have a manuscript published within three months after the manuscript has been accepted