{"title":"南非西海岸的污垢群落易受降温和海洋酸化的影响","authors":"Phikolomzi Matikinca, Tamara B. Robinson","doi":"10.1007/s12526-024-01420-0","DOIUrl":null,"url":null,"abstract":"<p>Changing temperature and ocean acidification are well-recognised consequences of climate change in marine systems. In contrast to global trends, the South African west coast is experiencing cooling due to increased frequency and intensity of upwelling. The implications of concurrent cooling and acidification for marine biota are poorly understood, particularly at the community level. This laboratory study assessed how cooling and acidification might affect fouling communities along the South African west coast. Communities were experimentally exposed to two temperatures, 13℃ (current) and 9℃ (cooling), and three pH treatments, 7.9 (current), 7.6 and 7.4, for 18 days. Cooling and acidification altered community structure. Species diversity declined in response to acidification but was not affected by cooling. This was driven by greatest loss of species at 7.4 pH. Notably, acidification reduced the abundance of both calcifying and soft-bodied taxa, highlighting the vulnerability of taxa like ascidians to acidification. Overall, these results highlight the dominant threat posed by acidification, even for alien taxa that are often perceived as resilient to climate change. Additionally, in regions experiencing cooling, acidification may pose a greater threat to fouling communities than thermal changes.</p>","PeriodicalId":18201,"journal":{"name":"Marine Biodiversity","volume":"34 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fouling communities from the South African west coast are vulnerable to cooling and ocean acidification\",\"authors\":\"Phikolomzi Matikinca, Tamara B. Robinson\",\"doi\":\"10.1007/s12526-024-01420-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Changing temperature and ocean acidification are well-recognised consequences of climate change in marine systems. In contrast to global trends, the South African west coast is experiencing cooling due to increased frequency and intensity of upwelling. The implications of concurrent cooling and acidification for marine biota are poorly understood, particularly at the community level. This laboratory study assessed how cooling and acidification might affect fouling communities along the South African west coast. Communities were experimentally exposed to two temperatures, 13℃ (current) and 9℃ (cooling), and three pH treatments, 7.9 (current), 7.6 and 7.4, for 18 days. Cooling and acidification altered community structure. Species diversity declined in response to acidification but was not affected by cooling. This was driven by greatest loss of species at 7.4 pH. Notably, acidification reduced the abundance of both calcifying and soft-bodied taxa, highlighting the vulnerability of taxa like ascidians to acidification. Overall, these results highlight the dominant threat posed by acidification, even for alien taxa that are often perceived as resilient to climate change. Additionally, in regions experiencing cooling, acidification may pose a greater threat to fouling communities than thermal changes.</p>\",\"PeriodicalId\":18201,\"journal\":{\"name\":\"Marine Biodiversity\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Biodiversity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s12526-024-01420-0\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biodiversity","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s12526-024-01420-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Fouling communities from the South African west coast are vulnerable to cooling and ocean acidification
Changing temperature and ocean acidification are well-recognised consequences of climate change in marine systems. In contrast to global trends, the South African west coast is experiencing cooling due to increased frequency and intensity of upwelling. The implications of concurrent cooling and acidification for marine biota are poorly understood, particularly at the community level. This laboratory study assessed how cooling and acidification might affect fouling communities along the South African west coast. Communities were experimentally exposed to two temperatures, 13℃ (current) and 9℃ (cooling), and three pH treatments, 7.9 (current), 7.6 and 7.4, for 18 days. Cooling and acidification altered community structure. Species diversity declined in response to acidification but was not affected by cooling. This was driven by greatest loss of species at 7.4 pH. Notably, acidification reduced the abundance of both calcifying and soft-bodied taxa, highlighting the vulnerability of taxa like ascidians to acidification. Overall, these results highlight the dominant threat posed by acidification, even for alien taxa that are often perceived as resilient to climate change. Additionally, in regions experiencing cooling, acidification may pose a greater threat to fouling communities than thermal changes.
期刊介绍:
Marine Biodiversity is a peer-reviewed international journal devoted to all aspects of biodiversity research on marine ecosystems. The journal is a relaunch of the well-known Senckenbergiana maritima" and covers research at gene, species and ecosystem level that focuses on describing the actors (genes and species), the patterns (gradients and distributions) and understanding of the processes responsible for the regulation and maintenance of diversity in marine systems. Also included are the study of species interactions (symbioses, parasitism, etc.) and the role of species in structuring marine ecosystem functioning.
Marine Biodiversity offers articles in the category original paper, short note, Oceanarium and review article. It forms a platform for marine biodiversity researchers from all over the world for the exchange of new information and discussions on concepts and exciting discoveries.
- Covers research in all aspects of biodiversity in marine ecosystems
- Describes the actors, the patterns and the processes responsible for diversity
- Offers peer-reviewed original papers, short communications, review articles and news (Oceanarium)
- No page charges