{"title":"活动性耐药性结核病患者单核巨噬细胞的溶酶体酶和氧爆发能力与细胞附着的关系","authors":"Febriana Catur Iswanti , Kurnia Maidarmi Handayani , Ardiana Kusumaningrum , Tomohiko Yamazaki , Diah Handayani , Mohamad Sadikin","doi":"10.1016/j.tube.2024.102498","DOIUrl":null,"url":null,"abstract":"<div><p>Drug resistance to tuberculosis (TB) has become an obstacle in eliminating tuberculosis. The transmission of drug-resistant TB from patients increases the incidence of primary drug-resistant (DR) TB in individuals who are in close contact. Therefore, it is necessary to incorporate an immunological approach into preventive therapy. This study focuses on the activity of lysosomal enzymes, oxygen bursts, and the attachment ability of macrophages among individuals diagnosed with active drug-resistant TB compared with close contacts with latent TB or healthy cases. We measured macrophage oxygen burst ability (Water-soluble tetrazolium salt (WST) test, Nitric Oxide production, and myeloperoxidase activity) and the degradative ability of lysosomes (activity of the β-glucuronidase and acid phosphatase enzymes). Six active DR-TB patients and 18 close-contact cases (8 Latent Tuberculosis Infection (LTBI); 10 healthy) were recruited at Universitas Indonesia Hospital. The macrophage attachment of the LTBI group was higher than in the other groups. NO production, myeloperoxidase activity, β-glucuronidase, and acid phosphatase were higher in the active DR-TB group. A negative correlation was uncovered between phagocytosis and NO production, myeloperoxidase activity, and lysosomal enzymes. The difference in macrophage function is expected to be a further reference in active DR-TB treatment or preventive therapy.</p></div>","PeriodicalId":23383,"journal":{"name":"Tuberculosis","volume":"146 ","pages":"Article 102498"},"PeriodicalIF":2.8000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1472979224000246/pdfft?md5=15ba43fa91118601eebf75ab840f7b87&pid=1-s2.0-S1472979224000246-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Lysosomal enzymes and the oxygen burst capability of monocyte-derived macrophages in active drug-resistant tuberculosis patients in relation to cell attachment\",\"authors\":\"Febriana Catur Iswanti , Kurnia Maidarmi Handayani , Ardiana Kusumaningrum , Tomohiko Yamazaki , Diah Handayani , Mohamad Sadikin\",\"doi\":\"10.1016/j.tube.2024.102498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Drug resistance to tuberculosis (TB) has become an obstacle in eliminating tuberculosis. The transmission of drug-resistant TB from patients increases the incidence of primary drug-resistant (DR) TB in individuals who are in close contact. Therefore, it is necessary to incorporate an immunological approach into preventive therapy. This study focuses on the activity of lysosomal enzymes, oxygen bursts, and the attachment ability of macrophages among individuals diagnosed with active drug-resistant TB compared with close contacts with latent TB or healthy cases. We measured macrophage oxygen burst ability (Water-soluble tetrazolium salt (WST) test, Nitric Oxide production, and myeloperoxidase activity) and the degradative ability of lysosomes (activity of the β-glucuronidase and acid phosphatase enzymes). Six active DR-TB patients and 18 close-contact cases (8 Latent Tuberculosis Infection (LTBI); 10 healthy) were recruited at Universitas Indonesia Hospital. The macrophage attachment of the LTBI group was higher than in the other groups. NO production, myeloperoxidase activity, β-glucuronidase, and acid phosphatase were higher in the active DR-TB group. A negative correlation was uncovered between phagocytosis and NO production, myeloperoxidase activity, and lysosomal enzymes. The difference in macrophage function is expected to be a further reference in active DR-TB treatment or preventive therapy.</p></div>\",\"PeriodicalId\":23383,\"journal\":{\"name\":\"Tuberculosis\",\"volume\":\"146 \",\"pages\":\"Article 102498\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1472979224000246/pdfft?md5=15ba43fa91118601eebf75ab840f7b87&pid=1-s2.0-S1472979224000246-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tuberculosis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1472979224000246\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tuberculosis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1472979224000246","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
结核病(TB)的耐药性已成为消除结核病的障碍。患者耐药性结核病的传播增加了密切接触者原发性耐药性结核病的发病率。因此,有必要在预防性治疗中加入免疫学方法。本研究重点研究了与潜伏肺结核患者或健康病例的密切接触者相比,确诊为活动性耐药肺结核患者的溶酶体酶活性、氧爆发以及巨噬细胞的附着能力。我们测量了巨噬细胞的氧爆发能力(水溶性四唑盐(WST)试验、一氧化氮产生量和髓过氧化物酶活性)和溶酶体的降解能力(β-葡糖醛酸酶和酸性磷酸酶的活性)。印度尼西亚大学医院招募了 6 名活动性 DR-TB 患者和 18 名密切接触者(8 名潜伏肺结核感染者(LTBI);10 名健康者)。LTBI组的巨噬细胞附着率高于其他组。活动性 DR-TB 组的 NO 生成量、髓过氧化物酶活性、β-葡萄糖醛酸酶和酸性磷酸酶较高。吞噬作用与 NO 生成、髓过氧化物酶活性和溶酶体酶之间呈负相关。巨噬细胞功能的差异有望成为活动性 DR-TB 治疗或预防性治疗的进一步参考。
Lysosomal enzymes and the oxygen burst capability of monocyte-derived macrophages in active drug-resistant tuberculosis patients in relation to cell attachment
Drug resistance to tuberculosis (TB) has become an obstacle in eliminating tuberculosis. The transmission of drug-resistant TB from patients increases the incidence of primary drug-resistant (DR) TB in individuals who are in close contact. Therefore, it is necessary to incorporate an immunological approach into preventive therapy. This study focuses on the activity of lysosomal enzymes, oxygen bursts, and the attachment ability of macrophages among individuals diagnosed with active drug-resistant TB compared with close contacts with latent TB or healthy cases. We measured macrophage oxygen burst ability (Water-soluble tetrazolium salt (WST) test, Nitric Oxide production, and myeloperoxidase activity) and the degradative ability of lysosomes (activity of the β-glucuronidase and acid phosphatase enzymes). Six active DR-TB patients and 18 close-contact cases (8 Latent Tuberculosis Infection (LTBI); 10 healthy) were recruited at Universitas Indonesia Hospital. The macrophage attachment of the LTBI group was higher than in the other groups. NO production, myeloperoxidase activity, β-glucuronidase, and acid phosphatase were higher in the active DR-TB group. A negative correlation was uncovered between phagocytosis and NO production, myeloperoxidase activity, and lysosomal enzymes. The difference in macrophage function is expected to be a further reference in active DR-TB treatment or preventive therapy.
期刊介绍:
Tuberculosis is a speciality journal focusing on basic experimental research on tuberculosis, notably on bacteriological, immunological and pathogenesis aspects of the disease. The journal publishes original research and reviews on the host response and immunology of tuberculosis and the molecular biology, genetics and physiology of the organism, however discourages submissions with a meta-analytical focus (for example, articles based on searches of published articles in public electronic databases, especially where there is lack of evidence of the personal involvement of authors in the generation of such material). We do not publish Clinical Case-Studies.
Areas on which submissions are welcomed include:
-Clinical TrialsDiagnostics-
Antimicrobial resistance-
Immunology-
Leprosy-
Microbiology, including microbial physiology-
Molecular epidemiology-
Non-tuberculous Mycobacteria-
Pathogenesis-
Pathology-
Vaccine development.
This Journal does not accept case-reports.
The resurgence of interest in tuberculosis has accelerated the pace of relevant research and Tuberculosis has grown with it, as the only journal dedicated to experimental biomedical research in tuberculosis.