{"title":"洞察自然语言数据库查询错误:从注意力错位到用户处理策略","authors":"Zheng Ning, Yuan Tian, Zheng Zhang, Tianyi Zhang, Toby Jia-Jun Li","doi":"10.1145/3650114","DOIUrl":null,"url":null,"abstract":"<p>Querying structured databases with natural language (NL2SQL) has remained a difficult problem for years. Recently, the advancement of machine learning (ML), natural language processing (NLP), and large language models (LLM) have led to significant improvements in performance, with the best model achieving ∼ 85% percent accuracy on the benchmark Spider dataset. However, there is a lack of a systematic understanding of the types, causes, and effectiveness of error-handling mechanisms of errors for erroneous queries nowadays. To bridge the gap, a taxonomy of errors made by four representative NL2SQL models was built in this work, along with an in-depth analysis of the errors. Second, the causes of model errors were explored by analyzing the model-human attention alignment to the natural language query. Last, a within-subjects user study with 26 participants was conducted to investigate the effectiveness of three interactive error-handling mechanisms in NL2SQL. Findings from this paper shed light on the design of model structure and error discovery and repair strategies for natural language data query interfaces in the future.</p>","PeriodicalId":48574,"journal":{"name":"ACM Transactions on Interactive Intelligent Systems","volume":"59 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into Natural Language Database Query Errors: From Attention Misalignment to User Handling Strategies\",\"authors\":\"Zheng Ning, Yuan Tian, Zheng Zhang, Tianyi Zhang, Toby Jia-Jun Li\",\"doi\":\"10.1145/3650114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Querying structured databases with natural language (NL2SQL) has remained a difficult problem for years. Recently, the advancement of machine learning (ML), natural language processing (NLP), and large language models (LLM) have led to significant improvements in performance, with the best model achieving ∼ 85% percent accuracy on the benchmark Spider dataset. However, there is a lack of a systematic understanding of the types, causes, and effectiveness of error-handling mechanisms of errors for erroneous queries nowadays. To bridge the gap, a taxonomy of errors made by four representative NL2SQL models was built in this work, along with an in-depth analysis of the errors. Second, the causes of model errors were explored by analyzing the model-human attention alignment to the natural language query. Last, a within-subjects user study with 26 participants was conducted to investigate the effectiveness of three interactive error-handling mechanisms in NL2SQL. Findings from this paper shed light on the design of model structure and error discovery and repair strategies for natural language data query interfaces in the future.</p>\",\"PeriodicalId\":48574,\"journal\":{\"name\":\"ACM Transactions on Interactive Intelligent Systems\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Interactive Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3650114\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Interactive Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3650114","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Insights into Natural Language Database Query Errors: From Attention Misalignment to User Handling Strategies
Querying structured databases with natural language (NL2SQL) has remained a difficult problem for years. Recently, the advancement of machine learning (ML), natural language processing (NLP), and large language models (LLM) have led to significant improvements in performance, with the best model achieving ∼ 85% percent accuracy on the benchmark Spider dataset. However, there is a lack of a systematic understanding of the types, causes, and effectiveness of error-handling mechanisms of errors for erroneous queries nowadays. To bridge the gap, a taxonomy of errors made by four representative NL2SQL models was built in this work, along with an in-depth analysis of the errors. Second, the causes of model errors were explored by analyzing the model-human attention alignment to the natural language query. Last, a within-subjects user study with 26 participants was conducted to investigate the effectiveness of three interactive error-handling mechanisms in NL2SQL. Findings from this paper shed light on the design of model structure and error discovery and repair strategies for natural language data query interfaces in the future.
期刊介绍:
The ACM Transactions on Interactive Intelligent Systems (TiiS) publishes papers on research concerning the design, realization, or evaluation of interactive systems that incorporate some form of machine intelligence. TIIS articles come from a wide range of research areas and communities. An article can take any of several complementary views of interactive intelligent systems, focusing on:
the intelligent technology,
the interaction of users with the system, or
both aspects at once.