真糟糕:通过隐式局部特征聚类进行盲目异常检测

IF 2.4 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Vision and Applications Pub Date : 2024-03-02 DOI:10.1007/s00138-024-01511-9
Jie Zhang, Masanori Suganuma, Takayuki Okatani
{"title":"真糟糕:通过隐式局部特征聚类进行盲目异常检测","authors":"Jie Zhang, Masanori Suganuma, Takayuki Okatani","doi":"10.1007/s00138-024-01511-9","DOIUrl":null,"url":null,"abstract":"<p>Recent studies on visual anomaly detection (AD) of industrial objects/textures have achieved quite good performance. They consider an unsupervised setting, specifically the one-class setting, in which we assume the availability of a set of normal (i.e., anomaly-free) images for training. In this paper, we consider a more challenging scenario of unsupervised AD, in which we detect anomalies in a given set of images that might contain both normal and anomalous samples. The setting does not assume the availability of known normal data and thus is completely free from human annotation, which differs from the standard AD considered in recent studies. For clarity, we call the setting blind anomaly detection (BAD). We show that BAD can be converted into a local outlier detection problem and propose a novel method named PatchCluster that can accurately detect image- and pixel-level anomalies. Experimental results show that PatchCluster shows a promising performance without the knowledge of normal data, even comparable to the SOTA methods applied in the one-class setting needing it.</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"That’s BAD: blind anomaly detection by implicit local feature clustering\",\"authors\":\"Jie Zhang, Masanori Suganuma, Takayuki Okatani\",\"doi\":\"10.1007/s00138-024-01511-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent studies on visual anomaly detection (AD) of industrial objects/textures have achieved quite good performance. They consider an unsupervised setting, specifically the one-class setting, in which we assume the availability of a set of normal (i.e., anomaly-free) images for training. In this paper, we consider a more challenging scenario of unsupervised AD, in which we detect anomalies in a given set of images that might contain both normal and anomalous samples. The setting does not assume the availability of known normal data and thus is completely free from human annotation, which differs from the standard AD considered in recent studies. For clarity, we call the setting blind anomaly detection (BAD). We show that BAD can be converted into a local outlier detection problem and propose a novel method named PatchCluster that can accurately detect image- and pixel-level anomalies. Experimental results show that PatchCluster shows a promising performance without the knowledge of normal data, even comparable to the SOTA methods applied in the one-class setting needing it.</p>\",\"PeriodicalId\":51116,\"journal\":{\"name\":\"Machine Vision and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Vision and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00138-024-01511-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-024-01511-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近关于工业物体/纹理视觉异常检测(AD)的研究取得了相当不错的效果。这些研究考虑了无监督环境,特别是单类环境,其中我们假设有一组正常(即无异常)图像用于训练。在本文中,我们考虑的是更具挑战性的无监督 AD 场景,即在一组给定的图像中检测异常情况,这组图像可能既包含正常样本,也包含异常样本。这种情况不假定存在已知的正常数据,因此完全不需要人工标注,这与近期研究中考虑的标准 AD 有所不同。为清楚起见,我们称这种设置为盲法异常检测(BAD)。我们的研究表明,BAD 可以转化为局部异常点检测问题,并提出了一种名为 PatchCluster 的新方法,该方法可以准确检测图像和像素级异常点。实验结果表明,PatchCluster 在不了解正常数据的情况下表现出了良好的性能,甚至可以与在单类设置中应用的 SOTA 方法相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
That’s BAD: blind anomaly detection by implicit local feature clustering

Recent studies on visual anomaly detection (AD) of industrial objects/textures have achieved quite good performance. They consider an unsupervised setting, specifically the one-class setting, in which we assume the availability of a set of normal (i.e., anomaly-free) images for training. In this paper, we consider a more challenging scenario of unsupervised AD, in which we detect anomalies in a given set of images that might contain both normal and anomalous samples. The setting does not assume the availability of known normal data and thus is completely free from human annotation, which differs from the standard AD considered in recent studies. For clarity, we call the setting blind anomaly detection (BAD). We show that BAD can be converted into a local outlier detection problem and propose a novel method named PatchCluster that can accurately detect image- and pixel-level anomalies. Experimental results show that PatchCluster shows a promising performance without the knowledge of normal data, even comparable to the SOTA methods applied in the one-class setting needing it.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Vision and Applications
Machine Vision and Applications 工程技术-工程:电子与电气
CiteScore
6.30
自引率
3.00%
发文量
84
审稿时长
8.7 months
期刊介绍: Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal. Particular emphasis is placed on engineering and technology aspects of image processing and computer vision. The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.
期刊最新文献
A novel key point based ROI segmentation and image captioning using guidance information Specular Surface Detection with Deep Static Specular Flow and Highlight Removing cloud shadows from ground-based solar imagery Underwater image object detection based on multi-scale feature fusion Object Recognition Consistency in Regression for Active Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1