基于随机后裔的蜂群优化

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED Acta Applicandae Mathematicae Pub Date : 2024-03-01 DOI:10.1007/s10440-024-00639-0
Eitan Tadmor, Anil Zenginoğlu
{"title":"基于随机后裔的蜂群优化","authors":"Eitan Tadmor,&nbsp;Anil Zenginoğlu","doi":"10.1007/s10440-024-00639-0","DOIUrl":null,"url":null,"abstract":"<div><p>We extend our study of the swarm-based gradient descent method for non-convex optimization, (Lu et al., Swarm-based gradient descent method for non-convex optimization, 2022, arXiv:2211.17157), to allow random descent directions. We recall that the swarm-based approach consists of a swarm of agents, each identified with a position, <span>\\(\\mathbf{x}\\)</span>, and mass, <span>\\(m\\)</span>. The key is the transfer of mass from high ground to low(-est) ground. The mass of an agent dictates its step size: lighter agents take larger steps. In this paper, the essential new feature is the choice of direction: rather than restricting the swarm to march in the steepest gradient descent, we let agents proceed in randomly chosen directions centered around — but otherwise different from — the gradient direction. The random search secures the descent property while at the same time, enabling greater exploration of ambient space. Convergence analysis and benchmark optimizations demonstrate the effectiveness of the swarm-based random descent method as a multi-dimensional global optimizer.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"190 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Swarm-Based Optimization with Random Descent\",\"authors\":\"Eitan Tadmor,&nbsp;Anil Zenginoğlu\",\"doi\":\"10.1007/s10440-024-00639-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We extend our study of the swarm-based gradient descent method for non-convex optimization, (Lu et al., Swarm-based gradient descent method for non-convex optimization, 2022, arXiv:2211.17157), to allow random descent directions. We recall that the swarm-based approach consists of a swarm of agents, each identified with a position, <span>\\\\(\\\\mathbf{x}\\\\)</span>, and mass, <span>\\\\(m\\\\)</span>. The key is the transfer of mass from high ground to low(-est) ground. The mass of an agent dictates its step size: lighter agents take larger steps. In this paper, the essential new feature is the choice of direction: rather than restricting the swarm to march in the steepest gradient descent, we let agents proceed in randomly chosen directions centered around — but otherwise different from — the gradient direction. The random search secures the descent property while at the same time, enabling greater exploration of ambient space. Convergence analysis and benchmark optimizations demonstrate the effectiveness of the swarm-based random descent method as a multi-dimensional global optimizer.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"190 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00639-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00639-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们扩展了对基于蜂群的非凸优化梯度下降方法的研究(Lu 等,基于蜂群的非凸优化梯度下降方法,2022,arXiv:2211.17157),以允许随机下降方向。我们回顾一下,基于蜂群的方法由一群代理组成,每个代理都有一个位置(\mathbf{x}\)和质量(m\)。关键是质量从高处向低处转移。代理的质量决定了其步幅:较轻的代理步幅较大。在本文中,最重要的新特征是方向的选择:我们没有限制蜂群沿着最陡峭的梯度下降方向行进,而是让代理朝着以梯度方向为中心--但不同于梯度方向--随机选择的方向前进。随机搜索既能保证梯度下降特性,又能更大程度地探索环境空间。收敛分析和基准优化证明了基于蜂群的随机下降法作为多维全局优化器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Swarm-Based Optimization with Random Descent

We extend our study of the swarm-based gradient descent method for non-convex optimization, (Lu et al., Swarm-based gradient descent method for non-convex optimization, 2022, arXiv:2211.17157), to allow random descent directions. We recall that the swarm-based approach consists of a swarm of agents, each identified with a position, \(\mathbf{x}\), and mass, \(m\). The key is the transfer of mass from high ground to low(-est) ground. The mass of an agent dictates its step size: lighter agents take larger steps. In this paper, the essential new feature is the choice of direction: rather than restricting the swarm to march in the steepest gradient descent, we let agents proceed in randomly chosen directions centered around — but otherwise different from — the gradient direction. The random search secures the descent property while at the same time, enabling greater exploration of ambient space. Convergence analysis and benchmark optimizations demonstrate the effectiveness of the swarm-based random descent method as a multi-dimensional global optimizer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
期刊最新文献
Influence of Gauges in the Numerical Simulation of the Time-Dependent Ginzburg-Landau Model Some Properties on the Reversibility and the Linear Response Theory of Langevin Dynamics Reduced Order Model Based Nonlinear Waveform Inversion for the 1D Helmholtz Equation Qualitative Behavior of Solutions of a Chemotaxis System with Flux Limitation and Nonlinear Signal Production Harris’s Method for Non-conservative Periodic Semiflows and Application to Some Non-local PDEs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1