[脓毒性多器官功能衰竭发病机制的分子机制]。

Naoyuki Matsuda, Takuji Machida, Yuichi Hattori
{"title":"[脓毒性多器官功能衰竭发病机制的分子机制]。","authors":"Naoyuki Matsuda, Takuji Machida, Yuichi Hattori","doi":"10.1254/fpj.23109","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis is defined as the body's overwhelming and life-threatening response to infection that can lead to tissue damage, organ failure, and death. Since bacterial infection is one of the main causes of sepsis, appropriate antimicrobial therapy remains the cornerstone of sepsis and septic shock management. However, since sepsis is a multifaceted chaos involving inflammation and anti-inflammation disbalance leading to the unregulated widespread release of inflammatory mediators, cytokines, and pathogen-related molecules leading to system-wide organ dysfunction, the whole body control to prevent the progression of organ dysfunction is needed. In sepsis and septic shock, pathogen-associated molecular patterns (PAMPs), such as bacterial exotoxins, cause direct cellular damage and/or trigger an immune response in the host. PAMPs are recognized by pattern recognizing receptors (PRRs) expressed on immune-reactive cells. PRRs are also activated by host nuclear, mitochondrial, and cytosolic proteins, known as damage-associated molecular patterns (DAMPs) that are released from cells during sepsis. Thus, most PRRs respond to PAMPs or DAMPs by triggering activation of transcriptional factors, NF-κB, AP1, and STAT-3. On the other hand, sepsis leads to immune (lymphocytes and macrophages) and nonimmune (endothelial and epithelial cells) cell death. Apoptosis has been the major focus of research on cell death in sepsis, but autophagy, necrosis, necroptosis, pyroptosis, NETosis, and ferroptosis may also play an important role in this critical situation. The recent development in our understanding regarding the cellular pathogenesis of sepsis will help in developing new treatment of sepsis.</p>","PeriodicalId":12208,"journal":{"name":"Folia Pharmacologica Japonica","volume":"159 2","pages":"101-106"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Molecular mechanisms underlying the pathogenesis of septic multiple organ failure].\",\"authors\":\"Naoyuki Matsuda, Takuji Machida, Yuichi Hattori\",\"doi\":\"10.1254/fpj.23109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sepsis is defined as the body's overwhelming and life-threatening response to infection that can lead to tissue damage, organ failure, and death. Since bacterial infection is one of the main causes of sepsis, appropriate antimicrobial therapy remains the cornerstone of sepsis and septic shock management. However, since sepsis is a multifaceted chaos involving inflammation and anti-inflammation disbalance leading to the unregulated widespread release of inflammatory mediators, cytokines, and pathogen-related molecules leading to system-wide organ dysfunction, the whole body control to prevent the progression of organ dysfunction is needed. In sepsis and septic shock, pathogen-associated molecular patterns (PAMPs), such as bacterial exotoxins, cause direct cellular damage and/or trigger an immune response in the host. PAMPs are recognized by pattern recognizing receptors (PRRs) expressed on immune-reactive cells. PRRs are also activated by host nuclear, mitochondrial, and cytosolic proteins, known as damage-associated molecular patterns (DAMPs) that are released from cells during sepsis. Thus, most PRRs respond to PAMPs or DAMPs by triggering activation of transcriptional factors, NF-κB, AP1, and STAT-3. On the other hand, sepsis leads to immune (lymphocytes and macrophages) and nonimmune (endothelial and epithelial cells) cell death. Apoptosis has been the major focus of research on cell death in sepsis, but autophagy, necrosis, necroptosis, pyroptosis, NETosis, and ferroptosis may also play an important role in this critical situation. The recent development in our understanding regarding the cellular pathogenesis of sepsis will help in developing new treatment of sepsis.</p>\",\"PeriodicalId\":12208,\"journal\":{\"name\":\"Folia Pharmacologica Japonica\",\"volume\":\"159 2\",\"pages\":\"101-106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Folia Pharmacologica Japonica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1254/fpj.23109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia Pharmacologica Japonica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1254/fpj.23109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

败血症是指机体对感染做出的压倒性、危及生命的反应,可导致组织损伤、器官衰竭和死亡。由于细菌感染是败血症的主要原因之一,因此适当的抗菌治疗仍然是败血症和脓毒性休克治疗的基石。然而,由于脓毒症是一种涉及炎症和抗炎失衡的多方面混乱,导致炎症介质、细胞因子和病原体相关分子不受调节地广泛释放,从而导致全系统器官功能障碍,因此需要进行全身控制,以防止器官功能障碍的恶化。在败血症和脓毒性休克中,病原体相关分子模式(PAMPs),如细菌外毒素,会造成直接的细胞损伤和/或引发宿主的免疫反应。免疫反应细胞上表达的模式识别受体(PRRs)可识别 PAMPs。PRRs 还会被宿主的核、线粒体和细胞膜蛋白激活,这些蛋白被称为损伤相关分子模式(DAMPs),在败血症期间从细胞中释放出来。因此,大多数 PRR 对 PAMP 或 DAMP 的反应是触发转录因子、NF-κB、AP1 和 STAT-3 的活化。另一方面,败血症会导致免疫细胞(淋巴细胞和巨噬细胞)和非免疫细胞(内皮细胞和上皮细胞)死亡。细胞凋亡一直是败血症细胞死亡研究的重点,但自噬、坏死、坏死凋亡、热凋亡、NETosis 和 ferroptosis 也可能在这一危急情况中发挥重要作用。我们对脓毒症细胞发病机制的最新认识将有助于开发治疗脓毒症的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[Molecular mechanisms underlying the pathogenesis of septic multiple organ failure].

Sepsis is defined as the body's overwhelming and life-threatening response to infection that can lead to tissue damage, organ failure, and death. Since bacterial infection is one of the main causes of sepsis, appropriate antimicrobial therapy remains the cornerstone of sepsis and septic shock management. However, since sepsis is a multifaceted chaos involving inflammation and anti-inflammation disbalance leading to the unregulated widespread release of inflammatory mediators, cytokines, and pathogen-related molecules leading to system-wide organ dysfunction, the whole body control to prevent the progression of organ dysfunction is needed. In sepsis and septic shock, pathogen-associated molecular patterns (PAMPs), such as bacterial exotoxins, cause direct cellular damage and/or trigger an immune response in the host. PAMPs are recognized by pattern recognizing receptors (PRRs) expressed on immune-reactive cells. PRRs are also activated by host nuclear, mitochondrial, and cytosolic proteins, known as damage-associated molecular patterns (DAMPs) that are released from cells during sepsis. Thus, most PRRs respond to PAMPs or DAMPs by triggering activation of transcriptional factors, NF-κB, AP1, and STAT-3. On the other hand, sepsis leads to immune (lymphocytes and macrophages) and nonimmune (endothelial and epithelial cells) cell death. Apoptosis has been the major focus of research on cell death in sepsis, but autophagy, necrosis, necroptosis, pyroptosis, NETosis, and ferroptosis may also play an important role in this critical situation. The recent development in our understanding regarding the cellular pathogenesis of sepsis will help in developing new treatment of sepsis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Folia Pharmacologica Japonica
Folia Pharmacologica Japonica Pharmacology, Toxicology and Pharmaceutics-Pharmacology
CiteScore
0.40
自引率
0.00%
发文量
132
期刊最新文献
[Deep brain imaging by using GRIN lens].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1