{"title":"尿酸结石检测的进展:深度学习与上尿路 CT 成像和临床评估的整合。","authors":"Lichen Jin, Zongxin Chen, Yizhang Sun, Zhen Tian, Xincheng Yi, Yuhua Huang","doi":"10.1159/000538133","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Among upper urinary tract stones, a significant proportion comprises uric acid stones. The aim of this study was to use machine learning techniques to analyze CT scans and blood and urine test data, with the aim of establishing multiple predictive models that can accurately identify uric acid stones.</p><p><strong>Methods: </strong>We divided 276 patients with upper urinary tract stones into two groups: 48 with uric acid stones and 228 with other types, identified using Fourier-transform infrared spectroscopy. To distinguish the stone types, we created three types of deep learning models and extensively compared their classification performance.</p><p><strong>Results: </strong>Among the three major types of models, considering accuracy, sensitivity, and recall, CLNC-LR, IMG-support vector machine (SVM), and FUS-SVM perform the best. The accuracy and F1 score for the three models were as follows: CLNC-LR (82.14%, 0.7813), IMG-SVM (89.29%, 0.89), and FUS-SVM (29.29%, 0.8818). The area under the curves for classes CLNC-LR, IMG-SVM, and FUS-SVM were 0.97, 0.96, and 0.99, respectively.</p><p><strong>Conclusion: </strong>This study shows the feasibility of utilizing deep learning to assess whether urinary tract stones are uric acid stones through CT scans, blood, and urine tests. It can serve as a supplementary tool for traditional stone composition analysis, offering decision support for urologists and enhancing the effectiveness of diagnosis and treatment.</p>","PeriodicalId":23414,"journal":{"name":"Urologia Internationalis","volume":" ","pages":"234-241"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in Uric Acid Stone Detection: Integrating Deep Learning with CT Imaging and Clinical Assessments in the Upper Urinary Tract.\",\"authors\":\"Lichen Jin, Zongxin Chen, Yizhang Sun, Zhen Tian, Xincheng Yi, Yuhua Huang\",\"doi\":\"10.1159/000538133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Among upper urinary tract stones, a significant proportion comprises uric acid stones. The aim of this study was to use machine learning techniques to analyze CT scans and blood and urine test data, with the aim of establishing multiple predictive models that can accurately identify uric acid stones.</p><p><strong>Methods: </strong>We divided 276 patients with upper urinary tract stones into two groups: 48 with uric acid stones and 228 with other types, identified using Fourier-transform infrared spectroscopy. To distinguish the stone types, we created three types of deep learning models and extensively compared their classification performance.</p><p><strong>Results: </strong>Among the three major types of models, considering accuracy, sensitivity, and recall, CLNC-LR, IMG-support vector machine (SVM), and FUS-SVM perform the best. The accuracy and F1 score for the three models were as follows: CLNC-LR (82.14%, 0.7813), IMG-SVM (89.29%, 0.89), and FUS-SVM (29.29%, 0.8818). The area under the curves for classes CLNC-LR, IMG-SVM, and FUS-SVM were 0.97, 0.96, and 0.99, respectively.</p><p><strong>Conclusion: </strong>This study shows the feasibility of utilizing deep learning to assess whether urinary tract stones are uric acid stones through CT scans, blood, and urine tests. It can serve as a supplementary tool for traditional stone composition analysis, offering decision support for urologists and enhancing the effectiveness of diagnosis and treatment.</p>\",\"PeriodicalId\":23414,\"journal\":{\"name\":\"Urologia Internationalis\",\"volume\":\" \",\"pages\":\"234-241\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urologia Internationalis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000538133\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urologia Internationalis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000538133","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
Advancements in Uric Acid Stone Detection: Integrating Deep Learning with CT Imaging and Clinical Assessments in the Upper Urinary Tract.
Introduction: Among upper urinary tract stones, a significant proportion comprises uric acid stones. The aim of this study was to use machine learning techniques to analyze CT scans and blood and urine test data, with the aim of establishing multiple predictive models that can accurately identify uric acid stones.
Methods: We divided 276 patients with upper urinary tract stones into two groups: 48 with uric acid stones and 228 with other types, identified using Fourier-transform infrared spectroscopy. To distinguish the stone types, we created three types of deep learning models and extensively compared their classification performance.
Results: Among the three major types of models, considering accuracy, sensitivity, and recall, CLNC-LR, IMG-support vector machine (SVM), and FUS-SVM perform the best. The accuracy and F1 score for the three models were as follows: CLNC-LR (82.14%, 0.7813), IMG-SVM (89.29%, 0.89), and FUS-SVM (29.29%, 0.8818). The area under the curves for classes CLNC-LR, IMG-SVM, and FUS-SVM were 0.97, 0.96, and 0.99, respectively.
Conclusion: This study shows the feasibility of utilizing deep learning to assess whether urinary tract stones are uric acid stones through CT scans, blood, and urine tests. It can serve as a supplementary tool for traditional stone composition analysis, offering decision support for urologists and enhancing the effectiveness of diagnosis and treatment.
期刊介绍:
Concise but fully substantiated international reports of clinically oriented research into science and current management of urogenital disorders form the nucleus of original as well as basic research papers. These are supplemented by up-to-date reviews by international experts on the state-of-the-art of key topics of clinical urological practice. Essential topics receiving regular coverage include the introduction of new techniques and instrumentation as well as the evaluation of new functional tests and diagnostic methods. Special attention is given to advances in surgical techniques and clinical oncology. The regular publication of selected case reports represents the great variation in urological disease and illustrates treatment solutions in singular cases.