{"title":"利用基于 ResNet 的网络,采用分裂-变换-合并策略和分裂注意力,对计算机断层扫描图像中的肺间质疾病进行模式分类。","authors":"Jian-Xun Chen, Yu-Cheng Shen, Shin-Lei Peng, Yi-Wen Chen, Hsin-Yuan Fang, Joung-Liang Lan, Cheng-Ting Shih","doi":"10.1007/s13246-024-01404-1","DOIUrl":null,"url":null,"abstract":"<p><p>In patients with interstitial lung disease (ILD), accurate pattern assessment from their computed tomography (CT) images could help track lung abnormalities and evaluate treatment efficacy. Based on excellent image classification performance, convolutional neural networks (CNNs) have been massively investigated for classifying and labeling pathological patterns in the CT images of ILD patients. However, previous studies rarely considered the three-dimensional (3D) structure of the pathological patterns of ILD and used two-dimensional network input. In addition, ResNet-based networks such as SE-ResNet and ResNeXt with high classification performance have not been used for pattern classification of ILD. This study proposed a SE-ResNeXt-SA-18 for classifying pathological patterns of ILD. The SE-ResNeXt-SA-18 integrated the multipath design of the ResNeXt and the feature weighting of the squeeze-and-excitation network with split attention. The classification performance of the SE-ResNeXt-SA-18 was compared with the ResNet-18 and SE-ResNeXt-18. The influence of the input patch size on classification performance was also evaluated. Results show that the classification accuracy was increased with the increase of the patch size. With a 32 × 32 × 16 input, the SE-ResNeXt-SA-18 presented the highest performance with average accuracy, sensitivity, and specificity of 0.991, 0.979, and 0.994. High-weight regions in the class activation maps of the SE-ResNeXt-SA-18 also matched the specific pattern features. In comparison, the performance of the SE-ResNeXt-SA-18 is superior to the previously reported CNNs in classifying the ILD patterns. We concluded that the SE-ResNeXt-SA-18 could help track or monitor the progress of ILD through accuracy pattern classification.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"755-767"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pattern classification of interstitial lung diseases from computed tomography images using a ResNet-based network with a split-transform-merge strategy and split attention.\",\"authors\":\"Jian-Xun Chen, Yu-Cheng Shen, Shin-Lei Peng, Yi-Wen Chen, Hsin-Yuan Fang, Joung-Liang Lan, Cheng-Ting Shih\",\"doi\":\"10.1007/s13246-024-01404-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In patients with interstitial lung disease (ILD), accurate pattern assessment from their computed tomography (CT) images could help track lung abnormalities and evaluate treatment efficacy. Based on excellent image classification performance, convolutional neural networks (CNNs) have been massively investigated for classifying and labeling pathological patterns in the CT images of ILD patients. However, previous studies rarely considered the three-dimensional (3D) structure of the pathological patterns of ILD and used two-dimensional network input. In addition, ResNet-based networks such as SE-ResNet and ResNeXt with high classification performance have not been used for pattern classification of ILD. This study proposed a SE-ResNeXt-SA-18 for classifying pathological patterns of ILD. The SE-ResNeXt-SA-18 integrated the multipath design of the ResNeXt and the feature weighting of the squeeze-and-excitation network with split attention. The classification performance of the SE-ResNeXt-SA-18 was compared with the ResNet-18 and SE-ResNeXt-18. The influence of the input patch size on classification performance was also evaluated. Results show that the classification accuracy was increased with the increase of the patch size. With a 32 × 32 × 16 input, the SE-ResNeXt-SA-18 presented the highest performance with average accuracy, sensitivity, and specificity of 0.991, 0.979, and 0.994. High-weight regions in the class activation maps of the SE-ResNeXt-SA-18 also matched the specific pattern features. In comparison, the performance of the SE-ResNeXt-SA-18 is superior to the previously reported CNNs in classifying the ILD patterns. We concluded that the SE-ResNeXt-SA-18 could help track or monitor the progress of ILD through accuracy pattern classification.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"755-767\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-024-01404-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01404-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Pattern classification of interstitial lung diseases from computed tomography images using a ResNet-based network with a split-transform-merge strategy and split attention.
In patients with interstitial lung disease (ILD), accurate pattern assessment from their computed tomography (CT) images could help track lung abnormalities and evaluate treatment efficacy. Based on excellent image classification performance, convolutional neural networks (CNNs) have been massively investigated for classifying and labeling pathological patterns in the CT images of ILD patients. However, previous studies rarely considered the three-dimensional (3D) structure of the pathological patterns of ILD and used two-dimensional network input. In addition, ResNet-based networks such as SE-ResNet and ResNeXt with high classification performance have not been used for pattern classification of ILD. This study proposed a SE-ResNeXt-SA-18 for classifying pathological patterns of ILD. The SE-ResNeXt-SA-18 integrated the multipath design of the ResNeXt and the feature weighting of the squeeze-and-excitation network with split attention. The classification performance of the SE-ResNeXt-SA-18 was compared with the ResNet-18 and SE-ResNeXt-18. The influence of the input patch size on classification performance was also evaluated. Results show that the classification accuracy was increased with the increase of the patch size. With a 32 × 32 × 16 input, the SE-ResNeXt-SA-18 presented the highest performance with average accuracy, sensitivity, and specificity of 0.991, 0.979, and 0.994. High-weight regions in the class activation maps of the SE-ResNeXt-SA-18 also matched the specific pattern features. In comparison, the performance of the SE-ResNeXt-SA-18 is superior to the previously reported CNNs in classifying the ILD patterns. We concluded that the SE-ResNeXt-SA-18 could help track or monitor the progress of ILD through accuracy pattern classification.