Motahareh Parsa, Seyed Mahmood Taghavi-Shahri, Ingrid Van Keilegom
{"title":"关于半参数 AFT 混合治愈模型中的变量选择。","authors":"Motahareh Parsa, Seyed Mahmood Taghavi-Shahri, Ingrid Van Keilegom","doi":"10.1007/s10985-024-09619-w","DOIUrl":null,"url":null,"abstract":"<p><p>In clinical studies, one often encounters time-to-event data that are subject to right censoring and for which a fraction of the patients under study never experience the event of interest. Such data can be modeled using cure models in survival analysis. In the presence of cure fraction, the mixture cure model is popular, since it allows to model probability to be cured (called the incidence) and the survival function of the uncured individuals (called the latency). In this paper, we develop a variable selection procedure for the incidence and latency parts of a mixture cure model, consisting of a logistic model for the incidence and a semiparametric accelerated failure time model for the latency. We use a penalized likelihood approach, based on adaptive LASSO penalties for each part of the model, and we consider two algorithms for optimizing the criterion function. Extensive simulations are carried out to assess the accuracy of the proposed selection procedure. Finally, we employ the proposed method to a real dataset regarding heart failure patients with left ventricular systolic dysfunction.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On variable selection in a semiparametric AFT mixture cure model.\",\"authors\":\"Motahareh Parsa, Seyed Mahmood Taghavi-Shahri, Ingrid Van Keilegom\",\"doi\":\"10.1007/s10985-024-09619-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In clinical studies, one often encounters time-to-event data that are subject to right censoring and for which a fraction of the patients under study never experience the event of interest. Such data can be modeled using cure models in survival analysis. In the presence of cure fraction, the mixture cure model is popular, since it allows to model probability to be cured (called the incidence) and the survival function of the uncured individuals (called the latency). In this paper, we develop a variable selection procedure for the incidence and latency parts of a mixture cure model, consisting of a logistic model for the incidence and a semiparametric accelerated failure time model for the latency. We use a penalized likelihood approach, based on adaptive LASSO penalties for each part of the model, and we consider two algorithms for optimizing the criterion function. Extensive simulations are carried out to assess the accuracy of the proposed selection procedure. Finally, we employ the proposed method to a real dataset regarding heart failure patients with left ventricular systolic dysfunction.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-024-09619-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-024-09619-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
On variable selection in a semiparametric AFT mixture cure model.
In clinical studies, one often encounters time-to-event data that are subject to right censoring and for which a fraction of the patients under study never experience the event of interest. Such data can be modeled using cure models in survival analysis. In the presence of cure fraction, the mixture cure model is popular, since it allows to model probability to be cured (called the incidence) and the survival function of the uncured individuals (called the latency). In this paper, we develop a variable selection procedure for the incidence and latency parts of a mixture cure model, consisting of a logistic model for the incidence and a semiparametric accelerated failure time model for the latency. We use a penalized likelihood approach, based on adaptive LASSO penalties for each part of the model, and we consider two algorithms for optimizing the criterion function. Extensive simulations are carried out to assess the accuracy of the proposed selection procedure. Finally, we employ the proposed method to a real dataset regarding heart failure patients with left ventricular systolic dysfunction.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.