Estefanía Dibello , Natalia Oddone , Jaime Franco , Tünde-Zita Illyés , Andrea Medeiros , Attila Kiss , Fanni Hőgye , Katalin E. Kövér , László Szilágyi , Marcelo A. Comini
{"title":"针对布氏锥虫感染阶段的高选择性硒糖","authors":"Estefanía Dibello , Natalia Oddone , Jaime Franco , Tünde-Zita Illyés , Andrea Medeiros , Attila Kiss , Fanni Hőgye , Katalin E. Kövér , László Szilágyi , Marcelo A. Comini","doi":"10.1016/j.ijpddr.2024.100529","DOIUrl":null,"url":null,"abstract":"<div><p>Earlier evidences showed that diglycosyl diselenides are active against the infective stage of African trypanosomes (top hits IC<sub>50</sub> 0.5 and 1.5 μM) but poorly selective (selectivity index <10). Here we extended the study to 33 new seleno-glycoconjugates with the aim to improve potency and selectivity. Three selenoglycosides and three glycosyl selenenylsulfides displayed IC<sub>50</sub> against bloodstream <em>Trypanosoma brucei</em> in the sub-μM range (IC<sub>50</sub> 0.35–0.77 μM) and four of them showed an improved selectivity (selectivity index >38-folds <em>vs.</em> murine and human macrohages). For the glycosyl selenylsulfides, the anti-trypanosomal activity was not significantly influenced by the nature of the moiety attached to the sulfur atom. Except for a quinoline-, and to a minor extent a nitro-derivative, the most selective hits induced a rapid (within 60 min) and marked perturbation of the LMWT-redox homeostasis. The formation of selenenylsulfide glycoconjugates with free thiols has been identified as a potential mechanism involved in this process.</p></div>","PeriodicalId":13775,"journal":{"name":"International Journal for Parasitology: Drugs and Drug Resistance","volume":"24 ","pages":"Article 100529"},"PeriodicalIF":4.1000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211320724000101/pdfft?md5=ab48ca5469710be897ae174f49a0ce29&pid=1-s2.0-S2211320724000101-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Selenosugars targeting the infective stage of Trypanosoma brucei with high selectivity\",\"authors\":\"Estefanía Dibello , Natalia Oddone , Jaime Franco , Tünde-Zita Illyés , Andrea Medeiros , Attila Kiss , Fanni Hőgye , Katalin E. Kövér , László Szilágyi , Marcelo A. Comini\",\"doi\":\"10.1016/j.ijpddr.2024.100529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Earlier evidences showed that diglycosyl diselenides are active against the infective stage of African trypanosomes (top hits IC<sub>50</sub> 0.5 and 1.5 μM) but poorly selective (selectivity index <10). Here we extended the study to 33 new seleno-glycoconjugates with the aim to improve potency and selectivity. Three selenoglycosides and three glycosyl selenenylsulfides displayed IC<sub>50</sub> against bloodstream <em>Trypanosoma brucei</em> in the sub-μM range (IC<sub>50</sub> 0.35–0.77 μM) and four of them showed an improved selectivity (selectivity index >38-folds <em>vs.</em> murine and human macrohages). For the glycosyl selenylsulfides, the anti-trypanosomal activity was not significantly influenced by the nature of the moiety attached to the sulfur atom. Except for a quinoline-, and to a minor extent a nitro-derivative, the most selective hits induced a rapid (within 60 min) and marked perturbation of the LMWT-redox homeostasis. The formation of selenenylsulfide glycoconjugates with free thiols has been identified as a potential mechanism involved in this process.</p></div>\",\"PeriodicalId\":13775,\"journal\":{\"name\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"volume\":\"24 \",\"pages\":\"Article 100529\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211320724000101/pdfft?md5=ab48ca5469710be897ae174f49a0ce29&pid=1-s2.0-S2211320724000101-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Parasitology: Drugs and Drug Resistance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211320724000101\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Parasitology: Drugs and Drug Resistance","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211320724000101","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Selenosugars targeting the infective stage of Trypanosoma brucei with high selectivity
Earlier evidences showed that diglycosyl diselenides are active against the infective stage of African trypanosomes (top hits IC50 0.5 and 1.5 μM) but poorly selective (selectivity index <10). Here we extended the study to 33 new seleno-glycoconjugates with the aim to improve potency and selectivity. Three selenoglycosides and three glycosyl selenenylsulfides displayed IC50 against bloodstream Trypanosoma brucei in the sub-μM range (IC50 0.35–0.77 μM) and four of them showed an improved selectivity (selectivity index >38-folds vs. murine and human macrohages). For the glycosyl selenylsulfides, the anti-trypanosomal activity was not significantly influenced by the nature of the moiety attached to the sulfur atom. Except for a quinoline-, and to a minor extent a nitro-derivative, the most selective hits induced a rapid (within 60 min) and marked perturbation of the LMWT-redox homeostasis. The formation of selenenylsulfide glycoconjugates with free thiols has been identified as a potential mechanism involved in this process.
期刊介绍:
The International Journal for Parasitology – Drugs and Drug Resistance is one of a series of specialist, open access journals launched by the International Journal for Parasitology. It publishes the results of original research in the area of anti-parasite drug identification, development and evaluation, and parasite drug resistance. The journal also covers research into natural products as anti-parasitic agents, and bioactive parasite products. Studies can be aimed at unicellular or multicellular parasites of human or veterinary importance.