生物炭上的变频微波诱导二氧化碳布杜尔反应

IF 13.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Biochar Pub Date : 2024-03-04 DOI:10.1007/s42773-023-00297-9
Jurong Ren, Jianchun Jiang, Jia Wang, Xiangzhou Yuan, Ao Wang
{"title":"生物炭上的变频微波诱导二氧化碳布杜尔反应","authors":"Jurong Ren, Jianchun Jiang, Jia Wang, Xiangzhou Yuan, Ao Wang","doi":"10.1007/s42773-023-00297-9","DOIUrl":null,"url":null,"abstract":"<p>The Boudouard reaction presents promising application prospects as a straightforward and efficient method for CO<sub>2</sub> conversion. However, its advancement is hindered primarily by elevated activation energy and a diminished conversion rate. This study employed a microwave reactor with a variable frequency as the initial approach to catalyze the CO<sub>2</sub> Boudouard reaction over biochar, with the primary objective of producing renewable CO. The study systematically investigated the influence of various variables, including the heating source, microwave frequency, microwave power, gas hourly space velocity (GHSV), and carrier gas, on the conversion of CO<sub>2</sub> and the selectivity towards CO. The experimental findings indicate that under static conditions, with a fixed microwave frequency set at 2450 MHz and 100 W microwave power, the Boudouard reaction did not initiate. Conversely, a CO<sub>2</sub> conversion rate of 8.8% was achieved when utilizing a microwave frequency of 4225 MHz. Under this unique frequency, further elevating the microwave power to 275 W leads to the complete conversion of CO<sub>2</sub>. Furthermore, a comparative analysis between microwave and electrical heating revealed that the CO production rate was 37.7 μmol kJ<sup>−1</sup> for microwave heating, in stark contrast to the considerably lower rate of 0.2 μmol kJ<sup>−1</sup> observed for electric heating. Following the reaction, the biochar retained its robust 3D skeleton structure and abundant pore configuration. Notably, the dielectric constant increased by a factor of 1.8 compared to its initial state, rendering it a promising microwave-absorbing material.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"4 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable frequency microwave induced CO2 Boudouard reaction over biochar\",\"authors\":\"Jurong Ren, Jianchun Jiang, Jia Wang, Xiangzhou Yuan, Ao Wang\",\"doi\":\"10.1007/s42773-023-00297-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Boudouard reaction presents promising application prospects as a straightforward and efficient method for CO<sub>2</sub> conversion. However, its advancement is hindered primarily by elevated activation energy and a diminished conversion rate. This study employed a microwave reactor with a variable frequency as the initial approach to catalyze the CO<sub>2</sub> Boudouard reaction over biochar, with the primary objective of producing renewable CO. The study systematically investigated the influence of various variables, including the heating source, microwave frequency, microwave power, gas hourly space velocity (GHSV), and carrier gas, on the conversion of CO<sub>2</sub> and the selectivity towards CO. The experimental findings indicate that under static conditions, with a fixed microwave frequency set at 2450 MHz and 100 W microwave power, the Boudouard reaction did not initiate. Conversely, a CO<sub>2</sub> conversion rate of 8.8% was achieved when utilizing a microwave frequency of 4225 MHz. Under this unique frequency, further elevating the microwave power to 275 W leads to the complete conversion of CO<sub>2</sub>. Furthermore, a comparative analysis between microwave and electrical heating revealed that the CO production rate was 37.7 μmol kJ<sup>−1</sup> for microwave heating, in stark contrast to the considerably lower rate of 0.2 μmol kJ<sup>−1</sup> observed for electric heating. Following the reaction, the biochar retained its robust 3D skeleton structure and abundant pore configuration. Notably, the dielectric constant increased by a factor of 1.8 compared to its initial state, rendering it a promising microwave-absorbing material.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-023-00297-9\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-023-00297-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

布杜尔反应作为一种简单高效的二氧化碳转化方法,具有广阔的应用前景。然而,其发展主要受到活化能升高和转化率降低的阻碍。本研究采用频率可变的微波反应器作为催化生物炭上二氧化碳布杜尔反应的初始方法,主要目的是生产可再生二氧化碳。研究系统地考察了各种变量,包括加热源、微波频率、微波功率、气体时空速度(GHSV)和载气对二氧化碳转化率和对 CO 的选择性的影响。实验结果表明,在固定微波频率为 2450 兆赫、微波功率为 100 瓦的静态条件下,布杜尔反应没有启动。相反,当使用 4225 兆赫的微波频率时,二氧化碳转化率达到了 8.8%。在这一独特的频率下,将微波功率进一步提高到 275 W,可实现二氧化碳的完全转化。此外,对微波加热和电加热的比较分析表明,微波加热的二氧化碳产生率为 37.7 μmol kJ-1,与电加热的 0.2 μmol kJ-1 形成鲜明对比。反应后,生物炭保持了其坚固的三维骨架结构和丰富的孔隙构造。值得注意的是,与初始状态相比,生物炭的介电常数增加了 1.8 倍,使其成为一种很有前途的微波吸收材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Variable frequency microwave induced CO2 Boudouard reaction over biochar

The Boudouard reaction presents promising application prospects as a straightforward and efficient method for CO2 conversion. However, its advancement is hindered primarily by elevated activation energy and a diminished conversion rate. This study employed a microwave reactor with a variable frequency as the initial approach to catalyze the CO2 Boudouard reaction over biochar, with the primary objective of producing renewable CO. The study systematically investigated the influence of various variables, including the heating source, microwave frequency, microwave power, gas hourly space velocity (GHSV), and carrier gas, on the conversion of CO2 and the selectivity towards CO. The experimental findings indicate that under static conditions, with a fixed microwave frequency set at 2450 MHz and 100 W microwave power, the Boudouard reaction did not initiate. Conversely, a CO2 conversion rate of 8.8% was achieved when utilizing a microwave frequency of 4225 MHz. Under this unique frequency, further elevating the microwave power to 275 W leads to the complete conversion of CO2. Furthermore, a comparative analysis between microwave and electrical heating revealed that the CO production rate was 37.7 μmol kJ−1 for microwave heating, in stark contrast to the considerably lower rate of 0.2 μmol kJ−1 observed for electric heating. Following the reaction, the biochar retained its robust 3D skeleton structure and abundant pore configuration. Notably, the dielectric constant increased by a factor of 1.8 compared to its initial state, rendering it a promising microwave-absorbing material.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochar
Biochar Multiple-
CiteScore
18.60
自引率
10.20%
发文量
61
期刊介绍: Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.
期刊最新文献
Analyzing the trends and hotspots of biochar’s applications in agriculture, environment, and energy: a bibliometrics study for 2022 and 2023 Oyster shell facilitates the green production of nitrogen-doped porous biochar from macroalgae: a case study for removing atrazine from water Novel utilization exploration for the dephosphorization waste of Ca–modified biochar: enhanced removal of heavy metal ions from water Plant performance and soil–plant carbon relationship response to different biochar types A critical review of hydrochar based photocatalysts by hydrothermal carbonization: synthesis, mechanisms, and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1