{"title":"统一守恒定律原子表征和场表征中的温度定义","authors":"Youping Chen","doi":"10.1098/rspa.2023.0606","DOIUrl":null,"url":null,"abstract":"In this work, a field representation of the conservation law of linear momentum is derived from the atomistic, using the theory of distributions as the mathematical tool, and expressed in terms of temperature field by defining temperature as a derived quantity as that in molecular kinetic theory and atomistic simulations. The formulation leads to a unified atomistic and continuum description of temperature and a new linear momentum equation that, supplemented by an interatomic potential, completely governs thermal and mechanical processes across scales from the atomic to the continuum. The conservation equation can be used to solve atomistic trajectories for systems at finite temperatures, as well as the evolution of field quantities in space and time, with atomic or multiscale resolution. Four sets of numerical examples are presented to demonstrate the efficacy of the formulation in capturing the effect of temperature and thermal fluctuations, including phonon density of states, thermally activated dislocation motion, dislocation formation during epitaxial processes, and attenuation of longitudinal acoustic waves as a result of their interaction with thermal phonons.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"9 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unifying temperature definition in atomistic and field representations of conservation laws\",\"authors\":\"Youping Chen\",\"doi\":\"10.1098/rspa.2023.0606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a field representation of the conservation law of linear momentum is derived from the atomistic, using the theory of distributions as the mathematical tool, and expressed in terms of temperature field by defining temperature as a derived quantity as that in molecular kinetic theory and atomistic simulations. The formulation leads to a unified atomistic and continuum description of temperature and a new linear momentum equation that, supplemented by an interatomic potential, completely governs thermal and mechanical processes across scales from the atomic to the continuum. The conservation equation can be used to solve atomistic trajectories for systems at finite temperatures, as well as the evolution of field quantities in space and time, with atomic or multiscale resolution. Four sets of numerical examples are presented to demonstrate the efficacy of the formulation in capturing the effect of temperature and thermal fluctuations, including phonon density of states, thermally activated dislocation motion, dislocation formation during epitaxial processes, and attenuation of longitudinal acoustic waves as a result of their interaction with thermal phonons.\",\"PeriodicalId\":20716,\"journal\":{\"name\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2023.0606\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0606","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Unifying temperature definition in atomistic and field representations of conservation laws
In this work, a field representation of the conservation law of linear momentum is derived from the atomistic, using the theory of distributions as the mathematical tool, and expressed in terms of temperature field by defining temperature as a derived quantity as that in molecular kinetic theory and atomistic simulations. The formulation leads to a unified atomistic and continuum description of temperature and a new linear momentum equation that, supplemented by an interatomic potential, completely governs thermal and mechanical processes across scales from the atomic to the continuum. The conservation equation can be used to solve atomistic trajectories for systems at finite temperatures, as well as the evolution of field quantities in space and time, with atomic or multiscale resolution. Four sets of numerical examples are presented to demonstrate the efficacy of the formulation in capturing the effect of temperature and thermal fluctuations, including phonon density of states, thermally activated dislocation motion, dislocation formation during epitaxial processes, and attenuation of longitudinal acoustic waves as a result of their interaction with thermal phonons.
期刊介绍:
Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.