Annette Zschiesche, Martin Scheu, Detlef Thieme, Annekathrin M Keiler, Benedikt Pulver, Laura M Huppertz, Volker Auwärter
{"title":"CH-PIATA--一种以乙酰胺连接体为特征的新型合成大麻素的新陈代谢透视。","authors":"Annette Zschiesche, Martin Scheu, Detlef Thieme, Annekathrin M Keiler, Benedikt Pulver, Laura M Huppertz, Volker Auwärter","doi":"10.1093/jat/bkae013","DOIUrl":null,"url":null,"abstract":"<p><p>The recent change from the popular carboxamide to an acetamide (ATA) linker scaffold in synthetic cannabinoid receptor agonists (SCRAs) can be interpreted as an attempt to circumvent legal regulations, setting new analytical challenges. Metabolites of N-cyclohexyl-2-(1-pentyl-1 H-indol-3-yl)acetamide: CH-PIATA, the second ATA type SCRA detected in the EU, were investigated in urine and serum samples by LC-HRMS-MS and LC-MS-MS. Two different in vitro models, a pHLM assay and HepG2-cells, as well as an in silico prediction by GLORYx freeware assisted in metabolite formation/identification. CH-PIATA was extensively metabolized, leading to metabolites formed primarily by mono- and dihydroxylation. For urine and serum specimens, monohydroxylation at the indole core or the methylene spacer of the acetamide linker (M1.8), carboxylic acid formation at the N-pentyl side chain (M3.1) and degradation of the latter leading to a tentatively identified N-propionic acid metabolite (M5.1) are suggested as reliable markers for substance intake. The N-propionic acid metabolite could not be confirmed in the in vitro assays as it includes multiple consecutive metabolic reactions. Furthermore, CH-PIATA could be detected as parent substance in blood samples, but not in urine. Both in vitro assays and the in silico tool proved suitable for predicting metabolites of CH-PIATA. Considering effort and costs, pHLM incubations seem to be more effective for metabolite prediction in forensic toxicology than HepG2 cells. The highlighted Phase I metabolites serve as reliable urinary targets for confirming CH-PIATA use. The in silico approach is advantageous when reference material is unavailable.</p>","PeriodicalId":14905,"journal":{"name":"Journal of analytical toxicology","volume":" ","pages":"359-371"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the metabolism of CH-PIATA-A novel synthetic cannabinoid featuring an acetamide linker.\",\"authors\":\"Annette Zschiesche, Martin Scheu, Detlef Thieme, Annekathrin M Keiler, Benedikt Pulver, Laura M Huppertz, Volker Auwärter\",\"doi\":\"10.1093/jat/bkae013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The recent change from the popular carboxamide to an acetamide (ATA) linker scaffold in synthetic cannabinoid receptor agonists (SCRAs) can be interpreted as an attempt to circumvent legal regulations, setting new analytical challenges. Metabolites of N-cyclohexyl-2-(1-pentyl-1 H-indol-3-yl)acetamide: CH-PIATA, the second ATA type SCRA detected in the EU, were investigated in urine and serum samples by LC-HRMS-MS and LC-MS-MS. Two different in vitro models, a pHLM assay and HepG2-cells, as well as an in silico prediction by GLORYx freeware assisted in metabolite formation/identification. CH-PIATA was extensively metabolized, leading to metabolites formed primarily by mono- and dihydroxylation. For urine and serum specimens, monohydroxylation at the indole core or the methylene spacer of the acetamide linker (M1.8), carboxylic acid formation at the N-pentyl side chain (M3.1) and degradation of the latter leading to a tentatively identified N-propionic acid metabolite (M5.1) are suggested as reliable markers for substance intake. The N-propionic acid metabolite could not be confirmed in the in vitro assays as it includes multiple consecutive metabolic reactions. Furthermore, CH-PIATA could be detected as parent substance in blood samples, but not in urine. Both in vitro assays and the in silico tool proved suitable for predicting metabolites of CH-PIATA. Considering effort and costs, pHLM incubations seem to be more effective for metabolite prediction in forensic toxicology than HepG2 cells. The highlighted Phase I metabolites serve as reliable urinary targets for confirming CH-PIATA use. The in silico approach is advantageous when reference material is unavailable.</p>\",\"PeriodicalId\":14905,\"journal\":{\"name\":\"Journal of analytical toxicology\",\"volume\":\" \",\"pages\":\"359-371\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of analytical toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jat/bkae013\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jat/bkae013","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Insights into the metabolism of CH-PIATA-A novel synthetic cannabinoid featuring an acetamide linker.
The recent change from the popular carboxamide to an acetamide (ATA) linker scaffold in synthetic cannabinoid receptor agonists (SCRAs) can be interpreted as an attempt to circumvent legal regulations, setting new analytical challenges. Metabolites of N-cyclohexyl-2-(1-pentyl-1 H-indol-3-yl)acetamide: CH-PIATA, the second ATA type SCRA detected in the EU, were investigated in urine and serum samples by LC-HRMS-MS and LC-MS-MS. Two different in vitro models, a pHLM assay and HepG2-cells, as well as an in silico prediction by GLORYx freeware assisted in metabolite formation/identification. CH-PIATA was extensively metabolized, leading to metabolites formed primarily by mono- and dihydroxylation. For urine and serum specimens, monohydroxylation at the indole core or the methylene spacer of the acetamide linker (M1.8), carboxylic acid formation at the N-pentyl side chain (M3.1) and degradation of the latter leading to a tentatively identified N-propionic acid metabolite (M5.1) are suggested as reliable markers for substance intake. The N-propionic acid metabolite could not be confirmed in the in vitro assays as it includes multiple consecutive metabolic reactions. Furthermore, CH-PIATA could be detected as parent substance in blood samples, but not in urine. Both in vitro assays and the in silico tool proved suitable for predicting metabolites of CH-PIATA. Considering effort and costs, pHLM incubations seem to be more effective for metabolite prediction in forensic toxicology than HepG2 cells. The highlighted Phase I metabolites serve as reliable urinary targets for confirming CH-PIATA use. The in silico approach is advantageous when reference material is unavailable.
期刊介绍:
The Journal of Analytical Toxicology (JAT) is an international toxicology journal devoted to the timely dissemination of scientific communications concerning potentially toxic substances and drug identification, isolation, and quantitation.
Since its inception in 1977, the Journal of Analytical Toxicology has striven to present state-of-the-art techniques used in toxicology labs. The peer-review process provided by the distinguished members of the Editorial Advisory Board ensures the high-quality and integrity of articles published in the Journal of Analytical Toxicology. Timely presentation of the latest toxicology developments is ensured through Technical Notes, Case Reports, and Letters to the Editor.