{"title":"评估利什曼寄生虫的自噬作用","authors":"Somtochukwu S Onwah, Jude E Uzonna, Saeid Ghavami","doi":"10.1007/7651_2024_517","DOIUrl":null,"url":null,"abstract":"<p><p>Leishmaniasis is a neglected tropical disease caused by numerous species of Leishmania parasites, including Leishmania major. The parasite is transmitted by several species of sandfly vectors and infects myeloid cells leading to a myriad of inflammatory responses, immune dysregulations, and disease manifestations. Every cell undergoes autophagy, a self-regulated degradative process that permits the cells to recycle damaged or worn-out organelles in order to maintain cellular health and homeostasis. Studies have shown that Leishmania modulates their host cell autophagic machinery and there are indications that the parasite-specific autophagic processes may be valuable for parasite virulence and survival. However, the role of autophagy in Leishmania is inconclusive because of the limited tools available to study the Leishmania-specific autophagic machinery. Here, we describe methods to study and definitively confirm autophagy in Leishmania major. Transmission electron microscopy (TEM) allowed us to visualize Leishmania autophagosomes, especially those containing damaged mitochondrial content, as well as dividing mitochondria with ongoing fusion/fission processes. Flow cytometry enabled us to identify the amount of acridine orange dye accumulating in the acidic vacuolar compartments in Leishmania major by detecting fluorescence in the red laser when autophagic inhibitors or enhancers were included. These methods will advance studies that aim to understand autophagic regulation in Leishmania parasites that could provide insights into developing improved therapeutic targets against leishmaniasis.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Autophagy in Leishmania Parasites.\",\"authors\":\"Somtochukwu S Onwah, Jude E Uzonna, Saeid Ghavami\",\"doi\":\"10.1007/7651_2024_517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Leishmaniasis is a neglected tropical disease caused by numerous species of Leishmania parasites, including Leishmania major. The parasite is transmitted by several species of sandfly vectors and infects myeloid cells leading to a myriad of inflammatory responses, immune dysregulations, and disease manifestations. Every cell undergoes autophagy, a self-regulated degradative process that permits the cells to recycle damaged or worn-out organelles in order to maintain cellular health and homeostasis. Studies have shown that Leishmania modulates their host cell autophagic machinery and there are indications that the parasite-specific autophagic processes may be valuable for parasite virulence and survival. However, the role of autophagy in Leishmania is inconclusive because of the limited tools available to study the Leishmania-specific autophagic machinery. Here, we describe methods to study and definitively confirm autophagy in Leishmania major. Transmission electron microscopy (TEM) allowed us to visualize Leishmania autophagosomes, especially those containing damaged mitochondrial content, as well as dividing mitochondria with ongoing fusion/fission processes. Flow cytometry enabled us to identify the amount of acridine orange dye accumulating in the acidic vacuolar compartments in Leishmania major by detecting fluorescence in the red laser when autophagic inhibitors or enhancers were included. These methods will advance studies that aim to understand autophagic regulation in Leishmania parasites that could provide insights into developing improved therapeutic targets against leishmaniasis.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2024_517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Leishmaniasis is a neglected tropical disease caused by numerous species of Leishmania parasites, including Leishmania major. The parasite is transmitted by several species of sandfly vectors and infects myeloid cells leading to a myriad of inflammatory responses, immune dysregulations, and disease manifestations. Every cell undergoes autophagy, a self-regulated degradative process that permits the cells to recycle damaged or worn-out organelles in order to maintain cellular health and homeostasis. Studies have shown that Leishmania modulates their host cell autophagic machinery and there are indications that the parasite-specific autophagic processes may be valuable for parasite virulence and survival. However, the role of autophagy in Leishmania is inconclusive because of the limited tools available to study the Leishmania-specific autophagic machinery. Here, we describe methods to study and definitively confirm autophagy in Leishmania major. Transmission electron microscopy (TEM) allowed us to visualize Leishmania autophagosomes, especially those containing damaged mitochondrial content, as well as dividing mitochondria with ongoing fusion/fission processes. Flow cytometry enabled us to identify the amount of acridine orange dye accumulating in the acidic vacuolar compartments in Leishmania major by detecting fluorescence in the red laser when autophagic inhibitors or enhancers were included. These methods will advance studies that aim to understand autophagic regulation in Leishmania parasites that could provide insights into developing improved therapeutic targets against leishmaniasis.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.