人脑中的大脑-海马相互作用:洞察衰老的新途径

IF 2.7 3区 医学 Q3 NEUROSCIENCES Cerebellum Pub Date : 2024-10-01 Epub Date: 2024-03-04 DOI:10.1007/s12311-024-01670-5
Jessica A Bernard
{"title":"人脑中的大脑-海马相互作用:洞察衰老的新途径","authors":"Jessica A Bernard","doi":"10.1007/s12311-024-01670-5","DOIUrl":null,"url":null,"abstract":"<p><p>The cerebellum is recognized as being important for optimal behavioral performance across task domains, including motor function, cognition, and affect. Decades of work have highlighted cerebello-thalamo-cortical circuits, from both structural and functional perspectives. However, these circuits of interest have been primarily (though not exclusively) focused on targets in the cerebral cortex. In addition to these cortical connections, the circuit linking the cerebellum and hippocampus is of particular interest. Recently, there has been an increased interest in this circuit, thanks in large part to novel findings in the animal literature demonstrating that neuronal firing in the cerebellum impacts that in the hippocampus. Work in the human brain has provided evidence for interactions between the cerebellum and hippocampus, though primarily this has been in the context of spatial navigation. Given the role of both regions in cognition and aging, and emerging evidence indicating that the cerebellum is impacted in age-related neurodegenerative disease such as Alzheimer's, I propose that further attention to this circuit is warranted. Here, I provide an overview of cerebello-hippocampal interactions in animal models and from human imaging and outline the possible utility of further investigations to improve our understanding of aging and age-related cognitive decline.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371944/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cerebello-Hippocampal Interactions in the Human Brain: A New Pathway for Insights Into Aging.\",\"authors\":\"Jessica A Bernard\",\"doi\":\"10.1007/s12311-024-01670-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cerebellum is recognized as being important for optimal behavioral performance across task domains, including motor function, cognition, and affect. Decades of work have highlighted cerebello-thalamo-cortical circuits, from both structural and functional perspectives. However, these circuits of interest have been primarily (though not exclusively) focused on targets in the cerebral cortex. In addition to these cortical connections, the circuit linking the cerebellum and hippocampus is of particular interest. Recently, there has been an increased interest in this circuit, thanks in large part to novel findings in the animal literature demonstrating that neuronal firing in the cerebellum impacts that in the hippocampus. Work in the human brain has provided evidence for interactions between the cerebellum and hippocampus, though primarily this has been in the context of spatial navigation. Given the role of both regions in cognition and aging, and emerging evidence indicating that the cerebellum is impacted in age-related neurodegenerative disease such as Alzheimer's, I propose that further attention to this circuit is warranted. Here, I provide an overview of cerebello-hippocampal interactions in animal models and from human imaging and outline the possible utility of further investigations to improve our understanding of aging and age-related cognitive decline.</p>\",\"PeriodicalId\":50706,\"journal\":{\"name\":\"Cerebellum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371944/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cerebellum\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12311-024-01670-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebellum","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12311-024-01670-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

小脑被认为对运动功能、认知和情感等任务领域的最佳行为表现非常重要。数十年的研究工作从结构和功能两个角度强调了小脑-大脑皮层回路。然而,这些感兴趣的回路主要(但不完全)集中在大脑皮层的目标上。除了这些皮层连接外,连接小脑和海马的回路也特别引人关注。最近,人们对这一回路的兴趣日益浓厚,这在很大程度上要归功于动物文献中的新发现,即小脑中的神经元发射会影响海马中的神经元发射。在人脑中的研究也为小脑和海马之间的相互作用提供了证据,不过这主要是在空间导航方面。鉴于这两个区域在认知和衰老中的作用,以及新出现的证据表明小脑在阿尔茨海默氏症等与年龄相关的神经退行性疾病中受到影响,我认为有必要进一步关注这一回路。在此,我将概述动物模型和人体成像中的小脑-海马相互作用,并概述进一步研究的可能用途,以增进我们对衰老和与年龄相关的认知衰退的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cerebello-Hippocampal Interactions in the Human Brain: A New Pathway for Insights Into Aging.

The cerebellum is recognized as being important for optimal behavioral performance across task domains, including motor function, cognition, and affect. Decades of work have highlighted cerebello-thalamo-cortical circuits, from both structural and functional perspectives. However, these circuits of interest have been primarily (though not exclusively) focused on targets in the cerebral cortex. In addition to these cortical connections, the circuit linking the cerebellum and hippocampus is of particular interest. Recently, there has been an increased interest in this circuit, thanks in large part to novel findings in the animal literature demonstrating that neuronal firing in the cerebellum impacts that in the hippocampus. Work in the human brain has provided evidence for interactions between the cerebellum and hippocampus, though primarily this has been in the context of spatial navigation. Given the role of both regions in cognition and aging, and emerging evidence indicating that the cerebellum is impacted in age-related neurodegenerative disease such as Alzheimer's, I propose that further attention to this circuit is warranted. Here, I provide an overview of cerebello-hippocampal interactions in animal models and from human imaging and outline the possible utility of further investigations to improve our understanding of aging and age-related cognitive decline.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cerebellum
Cerebellum 医学-神经科学
CiteScore
6.40
自引率
14.30%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Official publication of the Society for Research on the Cerebellum devoted to genetics of cerebellar ataxias, role of cerebellum in motor control and cognitive function, and amid an ageing population, diseases associated with cerebellar dysfunction. The Cerebellum is a central source for the latest developments in fundamental neurosciences including molecular and cellular biology; behavioural neurosciences and neurochemistry; genetics; fundamental and clinical neurophysiology; neurology and neuropathology; cognition and neuroimaging. The Cerebellum benefits neuroscientists in molecular and cellular biology; neurophysiologists; researchers in neurotransmission; neurologists; radiologists; paediatricians; neuropsychologists; students of neurology and psychiatry and others.
期刊最新文献
Potentiation of Motor Adaptation Via Cerebellar tACS: Characterization of the Stimulation Frequency. Correction: Silica Nanoparticles from Melon Seed Husk Abrogated Binary Metal(loid) Mediated Cerebellar Dysfunction by Attenuation of Oxido-inflammatory Response and Upregulation of Neurotrophic Factors in Male Albino Rats. Impact of SARS-CoV-2 Infection on Essential Tremor: A Retrospective Clinical and Kinematic Analysis. The Impact of Bilateral Cerebellar Transcranial Direct Current Stimulation on Balance Control in Healthy Young Adults. Differential Effects of Cerebellar Transcranial Direct Current Stimulation with Gait Training on Functional Mobility, Balance, and Ataxia Symptoms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1