Noha Anwar Hassuna, Eman M. Rabea, W. K. M. Mahdi, Wedad M. Abdelraheem
{"title":"从患有恶性肿瘤的儿童中分离出的尿路致病性大肠杆菌 ST131 的生物膜形成和抗菌药耐药性模式。","authors":"Noha Anwar Hassuna, Eman M. Rabea, W. K. M. Mahdi, Wedad M. Abdelraheem","doi":"10.1038/s41429-024-00704-8","DOIUrl":null,"url":null,"abstract":"The multidrug-resistant clone identified as Escherichia coli sequence type 131 (E. coli ST131) has spread world-wide. This study sought to ascertain the frequency and biofilm formation of E. coli ST131 isolated from children with various malignancies. A total of 60 uropathogenic E. coli (UPEC) isolates from children without cancer and 30 UPEC isolates from children with cancer were assessed in this study. The microdilution method was used to investigate the sensitivity of bacteria to antibiotics. The microtiter plate (MTP) approach was used to phenotypically assess biofilm formation. The lasR, pelA, and lecA biofilm-encoding genes were detected by PCR in biofilm-producing isolates of E. coli. Thirty-seven out of 90 E. coli isolates were found to be ST131 (41.1%), with 17 (56.7%) from cancer-affected children and 20 (33.3%) from children without cancer, respectively (P-value = 0.036). The frequency of antimicrobial resistance was higher in ST131 strains were compared to non-ST131 strains and when they were isolated from healthy children vs. those who had cancer. In contrast to non-ST131 isolates, ST131 isolates were more biofilm-producers. There was a significant difference between the percentage of biofilm producers between the 22 (100%) ST131-O16 isolates and the 13 (86.7%) ST131-O25b isolates (P-value = 0.04). Children with cancer are more likely than children without cancer to develop biofilm forming E. coli ST131, the latter having a higher profile of antibiotic resistance. Interestingly, E. coli ST131 isolates from non-cancer patients had higher levels of overall antibiotic resistance and while more E. coli ST131isolates from cancer patients formed biofilms.","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":"77 5","pages":"324-330"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41429-024-00704-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Biofilm formation and antimicrobial resistance pattern of uropathogenic E. coli ST131 isolated from children with malignant tumors\",\"authors\":\"Noha Anwar Hassuna, Eman M. Rabea, W. K. M. Mahdi, Wedad M. Abdelraheem\",\"doi\":\"10.1038/s41429-024-00704-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multidrug-resistant clone identified as Escherichia coli sequence type 131 (E. coli ST131) has spread world-wide. This study sought to ascertain the frequency and biofilm formation of E. coli ST131 isolated from children with various malignancies. A total of 60 uropathogenic E. coli (UPEC) isolates from children without cancer and 30 UPEC isolates from children with cancer were assessed in this study. The microdilution method was used to investigate the sensitivity of bacteria to antibiotics. The microtiter plate (MTP) approach was used to phenotypically assess biofilm formation. The lasR, pelA, and lecA biofilm-encoding genes were detected by PCR in biofilm-producing isolates of E. coli. Thirty-seven out of 90 E. coli isolates were found to be ST131 (41.1%), with 17 (56.7%) from cancer-affected children and 20 (33.3%) from children without cancer, respectively (P-value = 0.036). The frequency of antimicrobial resistance was higher in ST131 strains were compared to non-ST131 strains and when they were isolated from healthy children vs. those who had cancer. In contrast to non-ST131 isolates, ST131 isolates were more biofilm-producers. There was a significant difference between the percentage of biofilm producers between the 22 (100%) ST131-O16 isolates and the 13 (86.7%) ST131-O25b isolates (P-value = 0.04). Children with cancer are more likely than children without cancer to develop biofilm forming E. coli ST131, the latter having a higher profile of antibiotic resistance. Interestingly, E. coli ST131 isolates from non-cancer patients had higher levels of overall antibiotic resistance and while more E. coli ST131isolates from cancer patients formed biofilms.\",\"PeriodicalId\":54884,\"journal\":{\"name\":\"Journal of Antibiotics\",\"volume\":\"77 5\",\"pages\":\"324-330\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41429-024-00704-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Antibiotics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41429-024-00704-8\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41429-024-00704-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Biofilm formation and antimicrobial resistance pattern of uropathogenic E. coli ST131 isolated from children with malignant tumors
The multidrug-resistant clone identified as Escherichia coli sequence type 131 (E. coli ST131) has spread world-wide. This study sought to ascertain the frequency and biofilm formation of E. coli ST131 isolated from children with various malignancies. A total of 60 uropathogenic E. coli (UPEC) isolates from children without cancer and 30 UPEC isolates from children with cancer were assessed in this study. The microdilution method was used to investigate the sensitivity of bacteria to antibiotics. The microtiter plate (MTP) approach was used to phenotypically assess biofilm formation. The lasR, pelA, and lecA biofilm-encoding genes were detected by PCR in biofilm-producing isolates of E. coli. Thirty-seven out of 90 E. coli isolates were found to be ST131 (41.1%), with 17 (56.7%) from cancer-affected children and 20 (33.3%) from children without cancer, respectively (P-value = 0.036). The frequency of antimicrobial resistance was higher in ST131 strains were compared to non-ST131 strains and when they were isolated from healthy children vs. those who had cancer. In contrast to non-ST131 isolates, ST131 isolates were more biofilm-producers. There was a significant difference between the percentage of biofilm producers between the 22 (100%) ST131-O16 isolates and the 13 (86.7%) ST131-O25b isolates (P-value = 0.04). Children with cancer are more likely than children without cancer to develop biofilm forming E. coli ST131, the latter having a higher profile of antibiotic resistance. Interestingly, E. coli ST131 isolates from non-cancer patients had higher levels of overall antibiotic resistance and while more E. coli ST131isolates from cancer patients formed biofilms.
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.