{"title":"有根标签森林模式的 Wilf 等价关系","authors":"Michael Ren","doi":"10.1016/j.aam.2024.102675","DOIUrl":null,"url":null,"abstract":"<div><p>Building off recent work of Garg and Peng, we continue the investigation into classical and consecutive pattern avoidance in rooted forests, resolving some of their conjectures and questions and proving generalizations whenever possible. Through extensions of the forest Simion-Schmidt bijection introduced by Anders and Archer, we demonstrate a new family of forest-Wilf equivalences, completing the classification of forest-Wilf equivalence classes for sets consisting of a pattern of length 3 and a pattern of length at most 5. We also find a new family of nontrivial c-forest-Wilf equivalences between single patterns using the forest analogue of the Goulden-Jackson cluster method, showing that a <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span>-fraction of patterns of length <em>n</em> satisfy a nontrivial c-forest-Wilf equivalence and that there are c-forest-Wilf equivalence classes of patterns of length <em>n</em> of exponential size. Additionally, we consider a forest analogue of super-strong-c-Wilf equivalence, introduced for permutations by Dwyer and Elizalde, showing that super-strong-c-forest-Wilf equivalences are trivial by enumerating linear extensions of forest cluster posets.</p></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wilf equivalences for patterns in rooted labeled forests\",\"authors\":\"Michael Ren\",\"doi\":\"10.1016/j.aam.2024.102675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Building off recent work of Garg and Peng, we continue the investigation into classical and consecutive pattern avoidance in rooted forests, resolving some of their conjectures and questions and proving generalizations whenever possible. Through extensions of the forest Simion-Schmidt bijection introduced by Anders and Archer, we demonstrate a new family of forest-Wilf equivalences, completing the classification of forest-Wilf equivalence classes for sets consisting of a pattern of length 3 and a pattern of length at most 5. We also find a new family of nontrivial c-forest-Wilf equivalences between single patterns using the forest analogue of the Goulden-Jackson cluster method, showing that a <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span>-fraction of patterns of length <em>n</em> satisfy a nontrivial c-forest-Wilf equivalence and that there are c-forest-Wilf equivalence classes of patterns of length <em>n</em> of exponential size. Additionally, we consider a forest analogue of super-strong-c-Wilf equivalence, introduced for permutations by Dwyer and Elizalde, showing that super-strong-c-forest-Wilf equivalences are trivial by enumerating linear extensions of forest cluster posets.</p></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019688582400006X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019688582400006X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Wilf equivalences for patterns in rooted labeled forests
Building off recent work of Garg and Peng, we continue the investigation into classical and consecutive pattern avoidance in rooted forests, resolving some of their conjectures and questions and proving generalizations whenever possible. Through extensions of the forest Simion-Schmidt bijection introduced by Anders and Archer, we demonstrate a new family of forest-Wilf equivalences, completing the classification of forest-Wilf equivalence classes for sets consisting of a pattern of length 3 and a pattern of length at most 5. We also find a new family of nontrivial c-forest-Wilf equivalences between single patterns using the forest analogue of the Goulden-Jackson cluster method, showing that a -fraction of patterns of length n satisfy a nontrivial c-forest-Wilf equivalence and that there are c-forest-Wilf equivalence classes of patterns of length n of exponential size. Additionally, we consider a forest analogue of super-strong-c-Wilf equivalence, introduced for permutations by Dwyer and Elizalde, showing that super-strong-c-forest-Wilf equivalences are trivial by enumerating linear extensions of forest cluster posets.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.