非线性不确定生化系统的稳健渐近超扭曲滑模观测器

IF 3.3 2区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Journal of Process Control Pub Date : 2024-03-05 DOI:10.1016/j.jprocont.2024.103192
Mateusz Czyżniewski , Rafał Łangowski
{"title":"非线性不确定生化系统的稳健渐近超扭曲滑模观测器","authors":"Mateusz Czyżniewski ,&nbsp;Rafał Łangowski","doi":"10.1016/j.jprocont.2024.103192","DOIUrl":null,"url":null,"abstract":"<div><p>The problem of state estimation (reconstruction of the state vector) for a given class of biochemical systems under uncertain system dynamics has been addressed in this paper. In detail, the bioreactor at a water resource recovery facility represents the considered biochemical systems. The biochemical processes taking place in the bioreactor have been modelled using an activated sludge model. Based on this model, an appropriate utility model has been derived for estimation purposes. The internal dynamics of the model have been burdened with unstructured and parametric uncertainty due to the unknown reaction kinetics functions. Taking this uncertainty into account, an analysis of the observability and detectability of the utility model has been carried out. The utility model and the available set of inputs and measured outputs have been used to design a new robust non-linear observer that allows the estimation of state variables in the presence of uncertainty. In the synthesis of the observer, the asymptotic observer methodology has been combined with a second-order sliding mode observer, a so-called super twisting algorithm. The developed observer generates not only robust and stable estimates of the state variables but also enables the reconstruction of unknown kinetic functions. The stability of the designed observer has been proven using the Lyapunov stability theory. The observer has been implemented in the Matlab/Simulink environment. The comprehensive simulation studies carried out show the high efficiency of the estimation process using the developed state observer.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust asymptotic super twisting sliding mode observer for non-linear uncertain biochemical systems\",\"authors\":\"Mateusz Czyżniewski ,&nbsp;Rafał Łangowski\",\"doi\":\"10.1016/j.jprocont.2024.103192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The problem of state estimation (reconstruction of the state vector) for a given class of biochemical systems under uncertain system dynamics has been addressed in this paper. In detail, the bioreactor at a water resource recovery facility represents the considered biochemical systems. The biochemical processes taking place in the bioreactor have been modelled using an activated sludge model. Based on this model, an appropriate utility model has been derived for estimation purposes. The internal dynamics of the model have been burdened with unstructured and parametric uncertainty due to the unknown reaction kinetics functions. Taking this uncertainty into account, an analysis of the observability and detectability of the utility model has been carried out. The utility model and the available set of inputs and measured outputs have been used to design a new robust non-linear observer that allows the estimation of state variables in the presence of uncertainty. In the synthesis of the observer, the asymptotic observer methodology has been combined with a second-order sliding mode observer, a so-called super twisting algorithm. The developed observer generates not only robust and stable estimates of the state variables but also enables the reconstruction of unknown kinetic functions. The stability of the designed observer has been proven using the Lyapunov stability theory. The observer has been implemented in the Matlab/Simulink environment. The comprehensive simulation studies carried out show the high efficiency of the estimation process using the developed state observer.</p></div>\",\"PeriodicalId\":50079,\"journal\":{\"name\":\"Journal of Process Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Process Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959152424000325\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424000325","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了在不确定的系统动力学条件下,对给定类别的生化系统进行状态估计(重建状态向量)的问题。具体而言,一个水资源回收设施的生物反应器代表了所考虑的生化系统。生物反应器中的生化过程采用活性污泥模型进行模拟。在此模型的基础上,得出了一个适当的实用模型用于估算。由于反应动力学函数未知,该模型的内部动态具有非结构性和参数不确定性。考虑到这种不确定性,我们对实用模型的可观测性和可检测性进行了分析。利用实用模型和现有的输入和测量输出集设计了一种新的鲁棒非线性观测器,可以在存在不确定性的情况下估计状态变量。在该观测器的合成过程中,渐近观测器方法与二阶滑模观测器相结合,即所谓的超级扭曲算法。所开发的观测器不仅能生成稳健而稳定的状态变量估计值,还能重建未知的动力学函数。利用 Lyapunov 稳定性理论证明了所设计的观测器的稳定性。观测器是在 Matlab/Simulink 环境中实现的。所进行的综合模拟研究表明,使用所开发的状态观测器进行估计过程效率很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust asymptotic super twisting sliding mode observer for non-linear uncertain biochemical systems

The problem of state estimation (reconstruction of the state vector) for a given class of biochemical systems under uncertain system dynamics has been addressed in this paper. In detail, the bioreactor at a water resource recovery facility represents the considered biochemical systems. The biochemical processes taking place in the bioreactor have been modelled using an activated sludge model. Based on this model, an appropriate utility model has been derived for estimation purposes. The internal dynamics of the model have been burdened with unstructured and parametric uncertainty due to the unknown reaction kinetics functions. Taking this uncertainty into account, an analysis of the observability and detectability of the utility model has been carried out. The utility model and the available set of inputs and measured outputs have been used to design a new robust non-linear observer that allows the estimation of state variables in the presence of uncertainty. In the synthesis of the observer, the asymptotic observer methodology has been combined with a second-order sliding mode observer, a so-called super twisting algorithm. The developed observer generates not only robust and stable estimates of the state variables but also enables the reconstruction of unknown kinetic functions. The stability of the designed observer has been proven using the Lyapunov stability theory. The observer has been implemented in the Matlab/Simulink environment. The comprehensive simulation studies carried out show the high efficiency of the estimation process using the developed state observer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Process Control
Journal of Process Control 工程技术-工程:化工
CiteScore
7.00
自引率
11.90%
发文量
159
审稿时长
74 days
期刊介绍: This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others. Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques. Topics covered include: • Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.
期刊最新文献
Closed-loop training of static output feedback neural network controllers for large systems: A distillation case study A survey and experimental study for embedding-aware generative models: Features, models, and any-shot scenarios Physics-informed neural networks for multi-stage Koopman modeling of microbial fermentation processes Image based Modeling and Control for Batch Processes Pruned tree-structured temporal convolutional networks for quality variable prediction of industrial process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1